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• In the presence of weak interlayer coupling this 
setup has a potential to produce  a  
superconductor


• This is a fully gapped topological SC with protected 
chiral edge modes


• Exhibits spontaneous broken time reversal 
symmetry 

dx2−y2 + idxy

The idea: Engineer a high-Tc cuprate bilayer into a 
topological superconductor

Monolayer cuprate, e.g. Bi2Sr2CaCu2O8+δ:

  superconductordx2−y2

dx2−y2 + idxy

Nature Physics 17, 519 (2021)



Nature | Vol 575 | 7 November 2019 | 157

to environment and to doping variations, all extrinsic factors must 
be eliminated before ascribing the reduction of Tc in monolayers to 
the effect of dimensionality. The outstanding challenge has been to 
fabricate high-quality monolayer crystals and probe their intrinsic 
electronic structure.

Here we overcome these challenges by developing sample fabrication 
processes that preserve the intrinsic properties of monolayer Bi-2212. 
We first pinpoint two main causes of sample degradation—reaction 
with water vapour and rapid loss of oxygen dopant. We find that the 
degradation slows down in a cold, inert environment, in which pristine 
monolayer Bi-2212 can be obtained. Unlike the bulk crystal, the mon-
olayer Bi-2212 is extremely tunable: we can continuously vary its doping 
level in situ and map out major phases from the over-doped regime to 
the Mott insulating regime, in a single monolayer device. We find that 
the highest Tc of the monolayer is as high as that of optimally doped 
bulk. Moreover, STM/STS study reveals that the monolayer develops the  
same rich set of phases—HTS, pseudogap, charge order and Mott 

insulating phase, in particular—that were observed on the bulk surface. 
Detailed characterization of the phases reveals that they are indistin-
guishable from those in the bulk. A monolayer, therefore, contains all the  
essential physics of Bi-2212: that is, HTS in Bi-2212 is essentially a 2D 
phenomenon.

Fabricating pristine monolayer Bi-2212
We start with bulk Bi-2212 with a slightly modified stoichiometry, 
Bi1.9Sr2.1CaCu2O8+δ, which has a highest Tc of 88 K at optimal doping. In a 
monolayer Bi-2212, two CuO2 planes—separated by a Ca layer—are sand-
wiched between SrO and BiO planes to form a charge-neutral, septuple-
layered slab as shown in Fig. 1a. The parent compound of Bi-2212 is an 
antiferromagnetic Mott insulator45. Doping holes into the CuO2 planes 
generates a pseudogap phase that is characterized by strong depletion 
of density of states (DOS) near the Fermi level18–20. As the doping level 
p (holes per CuO2 plaquette) increases, the pseudogap phase evolves 
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Fig. 1 | Fabrication and characterization of atomically thin Bi-2212 transport 
devices. a, Atomic structure of Bi-2212. ‘Monolayer’ refers to a half unit cell in 
the out-of-plane direction that contains two CuO2 planes. The monolayers are 
separated by van der Waals gaps in bulk Bi-2212. b, Optical image of a typical Bi-
2212 thin flake exfoliated on Si wafer covered with 285-nm-thick SiO2. Scale bar, 
30 µm. c, Atomic force microscopy (AFM) image of the same flake shown in b 
(region marked by the black square). L, layer. Scale bar, 10 µm. d, Cross-sectional 
profile of optical contrast along the red line in b, in comparison with the cross-

sectional profile of AFM topography at the same location (blue line in c).  
The quantized steps in contrast and height profiles correspond to monolayer 
terraces of Bi-2212. e, Optical image of a monolayer Bi-2212 device. The bulk flake 
in contact with the monolayer is cut into separate pieces, which serve as 
electrical leads for transport measurements. Scale bar, 100 µm. f, Typical 
temperature-dependent resistance of a monolayer Bi-2212 sample (red) in 
comparison with that of an optimally doped bulk crystal (blue). Resistances are 
normalized by their values at T = 200 K.
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High-temperature superconductivity in 
monolayer Bi2Sr2CaCu2O8+δ

Yijun Yu1,2,3,7, Liguo Ma1,2,3,7*, Peng Cai1,2,3,7, Ruidan Zhong4, Cun Ye1,2,3, Jian Shen1,2,3, G. D. Gu4, 
Xian Hui Chen3,5,6* & Yuanbo Zhang1,2,3*

Although copper oxide high-temperature superconductors constitute a complex  
and diverse material family, they all share a layered lattice structure. This curious fact 
prompts the question of whether high-temperature superconductivity can exist  
in an isolated monolayer of copper oxide, and if so, whether the two-dimensional 
superconductivity and various related phenomena di!er from those of their  
three-dimensional counterparts. The answers may provide insights into the role of 
dimensionality in high-temperature superconductivity. Here we develop a 
fabrication process that obtains intrinsic monolayer crystals of the high-
temperature superconductor Bi2Sr2CaCu2O8+δ (Bi-2212; here, a monolayer refers to a 
half unit cell that contains two CuO2 planes). The highest superconducting transition 
temperature of the monolayer is as high as that of optimally doped bulk. The lack of 
dimensionality e!ect on the transition temperature de"es expectations from the 
Mermin–Wagner theorem, in contrast to the much-reduced transition temperature 
in conventional two-dimensional superconductors such as NbSe2. The properties of 
monolayer Bi-2212 become extremely tunable; our survey of superconductivity, the 
pseudogap, charge order and the Mott state at various doping concentrations 
reveals that the phases are indistinguishable from those in the bulk. Monolayer Bi-
2212 therefore displays all the fundamental physics of high-temperature 
superconductivity. Our results establish monolayer copper oxides as a platform for 
studying high-temperature superconductivity and other strongly correlated 
phenomena in two dimensions.

In systems with reduced dimensions, long-range order (superconduc-
tivity in particular) is strongly suppressed1,2, as in the case of conven-
tional Bardeen–Cooper–Schrieffer-type superconductors3,4, and yet 
all high-temperature copper oxide superconductors have a layered 
structure with varying degrees of anisotropy. This apparent dichotomy 
may be the key to high-temperature superconductivity (HTS)5–9, and 
it raises the question of whether HTS and various correlated phenom-
ena associated with it are different in two dimensions. This question 
is important for two reasons. First, most HTS theories are based on 
purely two-dimensional (2D) models10–12, whereas experiments show 
that supercurrent phase coherence13, charge ordering14,15 and charge 
dynamics16 all have a 3D nature17. Second, much of what we know about 
HTS came from experimental tools such as scanning tunnelling micros-
copy/spectroscopy (STM/STS) and angle-resolved photoemission 
spectroscopy (ARPES) that probe the surface of the materials18–36; HTS 
as a bulk property was inferred from the surface measurements. The 
bulk–surface correspondence becomes ideal if the HTS is truly 2D. 
To resolve these issues experimentally, an isolated monolayer high-
temperature superconductor is needed. Such an atomically thin crystal 

would represent an ideal correlated 2D system for exploring quantum 
phenomena in reduced dimensions.

Monolayer HTS has previously been studied mostly in epitaxial oxide 
heterostructures37–39, where the active layers are buried between inter-
faces. Such systems are not accessible to spectroscopic tools such as 
STM/STS and ARPES. In recent years, an alternative, top-down approach 
has emerged: it has become possible to mechanically exfoliate mon-
olayer atomic crystals (termed ‘2D materials’) from the layered bulk40,41. 
High-quality 2D materials ranging from insulators to metals and super-
conductors42 have been produced this way.

Experimentally extracting monolayers from bulk high-temperature 
superconductors, however, turned out to be extremely challenging. 
Although many of the bulk high-temperature superconductors are 
considered stable under ambient conditions, they are highly prone 
to chemical degradation when thinned to monolayers. Indeed, mon-
olayer Bi-2212 has been found to be insulating41,43 or superconducting 
with a much reduced transition temperature (Tc)44. The suppression 
is seemingly consistent with increased fluctuations expected in 2D 
superconductors. But given that the material is extremely sensitive 
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into a superconducting phase with highest Tc reaching 91 K at an opti-
mal doping level of p = 0.16 (ref. 46). Oxygen doping is therefore a key 
variable that determines the electronic structure in Bi-2212. Because 
the van der Waals interaction between the layers is weak, atomically 
thin Bi-2212 flakes can be obtained through mechanical exfoliation  
on an oxygen-plasma-treated SiO2 surface47. Figure 1b and e displays opti-
cal images of few-layer Bi-2212 in which the monolayer region is as large 
as several hundreds of micrometres in diameter (the number of layers is 
identified from the optical contrast, which correlates well with the thick-
ness of the crystals determined from atomic force microscopy; Fig. 1d).

The exfoliated monolayer Bi-2212 is extremely sensitive to its environ-
ment. We find that the monolayers are insulating if the specimen is pre-
pared under ambient conditions, consistent with previous reports41,43. 
A systematic investigation (see Extended Data Table 1 and Extended 
Data Fig. 1) reveals that exposing the monolayers to air, albeit briefly, 
renders them insulating. Guided by the investigation, we succeeded 
in obtaining high-quality, intrinsic monolayer Bi-2212 by fabricating 
samples on a cold stage kept at −40 °C inside an Ar-filled glove box with 
water and oxygen content below 0.1 ppm. Finally, we make electrical 
contacts to the monolayer flakes by cold-welding indium/gold micro-
electrodes (see Methods and Extended Data Table 1) on top. The flakes 
are then cut into an appropriate geometry with a sharp tip (Fig. 1e), and 
quickly transferred into an evacuated sample chamber for subsequent 
transport measurements. We have also obtained monolayer Bi-2212 of 
similar quality at low temperatures under ultra-high vacuum (UHV) for 
separate STM/STS study; details of the sample fabrication procedure 
are provided in the Methods.

Figure 1f shows the normalized resistance of a monolayer in compari-
son with that of optimally doped bulk Bi-2212. The monolayer retains 
HTS, and the sharp superconductivity transition signifies the high 
quality of the sample. More surprisingly, the Tc of the monolayer is 
almost as high as the optimal Tc in the bulk, indicating that HTS in 2D 
monolayer Bi-2212 does not differ appreciably from that in 3D bulk. This 
is corroborated by an accurate quantitative comparison of monolayer 
and bulk Tc, which we discuss below.

Tunable high-temperature superconductivity
The reduction in dimensionality produces a key advantage: the HTS in 
monolayer Bi-2212 becomes extremely tunable. The tunability stems 
from the fact that both sides of the monolayer are exposed, making it 
easy for interstitial oxygen to escape from or enter the crystal. Specifi-
cally, we find that mild vacuum annealing at temperatures between 
300 K and 380 K drives oxygen out of the monolayer. Meanwhile, anneal-
ing at about 200 K in ozone (partial pressure approximately 0.5 mbar) 
increases the oxygen concentration (Extended Data Fig. 2). These  
findings enable us to continuously vary the doping level and track the 
evolution of various phases, including superconductivity, from an  
over-doped to deeply under-doped regime (and vice versa) in a single 
monolayer sample. Figure 2a displays a set of measurements of  
temperature-dependent resistivity, □R T( ), of a monolayer Bi-2212  
(sample A), acquired between annealing treatments at 300–380 K in 
vacuum (base pressure <10−4 mbar). The annealing treatments progres-
sively lower the hole doping level in the monolayer and induce a tran-
sition from superconducting to insulating behaviour. Meanwhile, the 
room-temperature resistivity increases by one order of magnitude 
from about 1 kΩ to about 30 kΩ. Details of the transition become more 
apparent when the resistivity of the same sample (normalized to its 
value at T = 200 K) is plotted as a function of temperature and hole 
doping level p, as shown in Fig. 2b. (Here the hole doping level is deter-
mined from □p R T= const./ ( = 200 K); the value of the constant (const.) 
is chosen so that p = 0.16 at optimal doping48,49, and the precise value 
of p does not affect our conclusions.) As p decreases, Tc (defined as the 
temperature at which □R Td /d = 02 2 ; see Extended Data Fig. 3) rises at 
first, then falls continuously, giving rise to a superconducting dome 
that ends at  p ≈ 0.022. An insulating phase appears next to the  
superconducting dome. In addition, we observe at T T* > c the onset of 
the pseudogap phase that is marked by deviation from a linear  

□R T( ) in the normal state of a high-temperature superconductor under 
various doping levels (open black circles in Fig. 2b; see Extended Data 
Fig. 3 for detailed analysis). Figure 2b, therefore, maps out a phase 

0 100 200 300
10–2

100

102

104

106

84

85

86

87

88

89

90
0.0 0.2 0.4 0.6 0.8

0

100

200

300

1/RƑ(200 K) (mS)
T 

(K
)

0

1

2

3
R
Ƒ/

R
Ƒ(

20
0

K
)

a b

R
Ƒ 

(:
)

T (K)

Sample A

0.00 0.05 0.10 0.15

c

P = 217 :/R(200 K)

T c
m

ax
(K

)

Monolayer Bulk

Fig. 2 | Tunable high-temperature superconductivity in monolayer Bi-2212. 
a, Temperature-dependent resistivity □R p T( , ) of a monolayer Bi-2212 (sample A)  
that is initially over-doped. Data were acquired between annealing cycles that 
progressively lower the doping level of the sample (from purple to red).  
b, Conductivity plotted as a function of temperature and doping level. Doping 
level p is determined from □p R T= 217 Ω/ ( = 200 K). Black circles denote the 
onset of the pseudogap state at T*. Here the vertical error bars represent 
uncertainties in locating T* at which the temperature-dependent resistance 

deviates from linear behaviour. White circles mark the superconducting 
transition temperature Tc. The phase diagram spans the optimal doping at 
which Tc reaches its maximum value T c

max. c, T c
max obtained from different 

monolayer Bi-2212 samples (an example is shown in b), in comparison with Tc in 
optimally doped bulk crystals. The highest T c

max represents the maximum Tc of 
the most intrinsic monolayer in our experiment, and its value lies within the 
uncertainty range of the Tc in optimally doped bulk.



1. Ginzburg-Landau theory for twisted 
d-wave bilayers

ℱ[ψ1, ψ2] = f0[ψ1] + f0[ψ2] + A |ψ1 |2 |ψ2 |2

+B(ψ1ψ*2 + c . c.) + C(ψ2
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2 + c . c.)

d-wave symmetry dictates  B = − B0 cos(2θ)
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2. Microscopic theory - Continuum Bogoliubov-de Gennes 

ℋ = ∑
k

Ψ†
khkΨk + E0

5

plicity, we consider a circular Fermi surface generated by
⇠ka = ~2k2/2m � µ that remains invariant under rota-
tion, see Fig. 2(e). The problem posed by Hamiltonian
(7) is then solved by defining a four-component Nambu
spinor  k = (ck"1, c

†
�k#1, ck"2, c

†
�k#2)

T in terms of which

H =
P

k 
†
khk k+E0. Here, the Bogoliubov-de Gennes

(BdG) Hamiltonian reads

hk =

0

BB@

⇠k �k1 g 0
�⇤

k1 �⇠k 0 �g

g 0 ⇠k �k2

0 �g �⇤
k2 �⇠k

1

CCA (10)

and E0 =
P

k 2⇠k �
P

ka�kahc
†
k"ac

†
�k#ai. Diagonalizing

hk gives two pairs of energy eigenvalues ±Ek↵ (↵ = 1, 2)
for each momentum k. With the Hamiltonian (7) ex-
pressed in diagonal form, the free energy of the system
can be calculated from the standard expression

FBdG = E0 � 2kBT
X

k↵

ln [2 cosh (Ek↵/2kBT )] . (11)

By performing a systematic expansion of FBdG in powers
of the order parameter amplitudes �d, it is possible to
ascertain various coe�cients entering the GL free energy
(2). This confirms the form of the GL coe�cients B and
C deduced previously on the basis of general symmetry
arguments, and that K in Eq. (4) is positive. This cal-
culation is summarized in Methods (see also Extended
Data Fig. 1).

We proceed with a fully self-consistent solution which
follows from minimizing FBdG with respect to �ka and
can be performed for any given V, twist angle ✓ and tem-
perature T . To facilitate this calculation we assume that
the order parameters in the two layers have the same am-
plitude �d, but can di↵er in phase as in Eq. (3). Free
energy computed from Eq. (11) then shows the same
qualitative behaviour as the GL theory (4) with K > 0:
for small twist angles, FBdG(') has a single minimum at
' = 0, while for twist angles close to 45o there are always
two degenerate minima at ' = ±'min, indicating forma-
tion of a T -broken topological phase. Fig. 2(f) shows the
calculated 'min as a function of the twist angle ✓ for re-
alistic Bi2212 parameters [30–32] �d = 40 meV, g = 30
meV, ✏c = 60 meV at T = 0. We observe an excellent
agreement with the prediction of the GL theory when
K = 0.125. The BdG theory also allows us to predict the
minimum excitation gap which, in this simple model, can
be as large as 20 meV when ✓ is close to 45o.

The BdG theory can be formulated directly on the lat-
tice by starting from the Hubbard model with on-site re-
pulsion and nearest-neighbour attraction. This is known
to produce a dx2�y2 superconductor when applied to a

single CuO2 monolayer. The Hamiltonian is

H = �

X

ij,�a

tijc
†
i�acj�a � µ

X

i�a

ni�a

+
X

ij,a

Vijnianja �

X

ij�

gijc
†
i�1cj�2, (12)

where tij encodes the normal-state band structure of the
single layer, gij describes the interlayer tunneling and
Vij denotes density-density interactions. The mean-field
calculations are performed in bilayer geometries charac-
terized by a twist vector v = (m,n) and commensurate
twist angle ✓m,n = 2arctan (m/n) as explained in Meth-
ods and Extended Data Fig. 2. Our main results are
summarized in Fig. 3. These lend further support to
our conclusions drawn on the basis of the GL and con-
tinuum BdG approaches and show additional interesting
features.

The lattice model confirms the onset of the T -breaking
phase below critical temperature T̃c(✓) whose dependence
on ✓ is consistent with the GL prediction, see Fig. 3(a,b).
The results are in reasonable quantitative agreement with
the continuum BdG theory but the lattice model gives a
smaller spectral gap. This may be attributed to more
complicated Fermi surface geometry resulting from Bril-
louin zone folding that accompanies the large real-space
Moiré unit cell. The lattice model allows for a direct eval-
uation of the Chern number C, as discussed in Methods.
In addition to the C = 4 topological phase anticipated on
the basis of the continuum BdG theory, the T = 0 phase
diagrams in Fig. 3(c-e) reveal the existence of C = 2 and
C = 0 gapped phases that can be reached by varying the
chemical potential µ and the interlayer coupling strength
g0. In an experiment, the former can be tuned over a
wide range by oxygen annealing [1], while the latter may
depend on the twist angle ✓ and could be further con-
trolled by applying hydrostatic pressure as demonstrated
in twisted graphene [4]. As explained in Methods, the
C = 0 phase corresponds to a d + is superconductor,
while the C = 2 phase can be e↵ectively thought of as a
single-layer d + id

0 superconductor as illustrated in Ex-
tended Data Fig. 3. For a strip geometry, the lattice
model predicts protected chiral edge modes traversing
the bulk gap, Fig. 3(g,h), confirming the topological na-
ture of the d+ id

0 phase.
Additional interesting behaviour is observed at

nonzero temperature as discussed in Methods. Extended
Data Fig. 5 shows a phase transition from d+ is to d+ id

phase driven by increasing T . As we discuss in more de-
tail below, all these phenomena are experimentally acces-
sible using standard spectroscopic, thermodynamic and
transport techniques.

An extension of the GL theory and the microscopic
models to systems with multiple CuO2 planes per unit
cell is given in Methods with key results summarized in
Extended Data Fig. 6.

4

FIG. 3. Lattice model results. Panels (a,b) show the temperature dependence of the minimum gap �min, the maximum
gap �max and phase ', based on a fully self-consistent lattice calculation for coupled layers with commensurate twist angles
✓1,2 ' 53.13o, and ✓2,5 ' 43.60o corresponding to a unit cell with 10 and 58 sites, respectively. Panels (c-e) show zero
temperature phase diagrams of the system for three twist angles as a function of chemical potential µ and interlayer coupling
g0. The range of chemical potentials µ 2 (�1.6t,�1.0t) correspond to range of fillings n 2 (0.033, 0.04) near optimal doping.
Each data point in the phase diagram corresponds to an independent self-consistent solution and the radius of markers is
proportional to the size of the minimum gap �min. The color indicates the Chern number as shown in the legend. Panel (f)
displays tunneling conductance �(E)/�N calculated for ✓ ' 53.13o, µ/t = �1.3, g0 = 20meV and temperatures ranging from 0
to 1.2Tc as indicated by color scale. Curves for di↵erent temperatures have been o↵set for clarity. Panels (g) and (h) illustrate
the edge modes for C = 4 and C = 2 topological phases, respectively, in ✓2,5 configuration for parameters µ = �1.3t and
g0 = 20, 52 meV. The energy spectrum is shown for a bilayer system in the infinite strip geometry with width of 90 unit cells.
The color scale represents the normalized position expectation value of the eigenstate along the direction of finite length.

Hamiltonian

H =
X

k�a

⇠kac
†
k�ack�a + g

X

k�

⇣
c
†
k�1ck�2 + h.c.

⌘
(7)

+
X

ka

⇣
�kac

†
k"ac

†
�k#a + h.c.

⌘
�

X

ka

�kahc
†
k"ac

†
�k#ai.

Here, c†k�a creates an electron with crystal momentum k
and spin � in layer a = 1, 2 while ⇠ka and g represent the
in-plane kinetic energy and inter-plane tunneling ampli-
tude, respectively. The superconducting order parameter
in layer a can then be expressed as

�ka =
X

p

0
V

(a)
kp hc�p#acp"ai. (8)

The prime on the summation indicates a restriction to

momentum states with energy within ✏c of the Fermi
level. The Hamiltonian (7) should be regarded as a mean-
field approximation to the BCS pairing Hamiltonian with

an interaction term
P
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V
(a)
kp denotes the interaction matrix element in layer a.

We shall use a simple separable form

V
(a)
kp = �2V cos (2↵k) cos (2↵p), (9)

where ↵k represents the polar angle of the vector k. This
is known to yield a robust solution with dx2�y2 symmetry
for a single CuO2 layer, namely �ka = �d cos (2↵k).
In order to incorporate the twist, we take the in-

teraction in layer 1 as in Eq. (9), but we rotate the

interaction in layer 2 by angle ✓ such that V
(2)
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�2V cos (2↵k � 2✓) cos (2↵p � 2✓). For the sake of sim-
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3. Excitation spectra in the bilayer for   order 
parameter 
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FIG. 2. Twisted double layer d-wave superconductor. Panel (a) illustrates the lattice geometry at small twist angle
✓ < ✓

�
c where the free energy is minimized for interlayer phase di↵erence ' = 0. This results in a gapless spectrum with weakly

split Dirac points. For twist angles ✓ > ✓
�
c in panel (b) the preferred state has ' 6= 0. It breaks time reversal and is fully

gapped as indicated by the massive Dirac spectrum. The spectra are obtained by diagonalizing the BdG Hamiltonian (10); k?
and kk denote momentum components perpendicular and parallel to the Fermi surface near a nodal point. Panel (c) shows the
GL free energy F(') for twist angles ✓ ranging from 0o to 45o in 3o increments for K = 0.125. When ✓ > ✓

�
c minima occur

away from ' = 0. Panel (d): predicted phase diagram based on the the GL theory (2) and T̃c(✓) given by Eq. (6). TSC denotes
the gapped topological phase, dSC stands for gapless d-wave superconductor. Panel (e): Fermi surface and d-wave gap in the
continuum formulation of the microscopic model. Panel (f) displays the relative phase between the layers 'min that minimizes
the GL and the BdG free energy as a function of twist angle ✓. Orange symbols represent the spectral gap.

As illustrated in Fig. 2(f), a nontrivial phase di↵erence
occurs for a range of angles ✓�

c < ✓ < ✓
+
c with ✓

±
c =

1
2 arccos (⌥4K). This indicates a T -broken phase with or-
der parameter dx2�y2 + e

±i'mindxy which is fully gapped
and topologically non-trivial as long as 'min 6= 0,⇡, see
also Fig. 2(a,b). As K depends on temperature through
its dependence on  , the critical temperature T̃c of the
topological phase will be a function of the twist angle ✓.
If we adopt the standard GL temperature dependence for
the order parameter  (T ) =  0

p
1 � T/Tc, it is straight-

forward to deduce

T̃c(✓) = Tc

✓
1 �

| cos 2✓|

4K0

◆
, ✓

�
c < ✓ < ✓

+
c , (6)

where K0 = C 
2
0/B0. This defines the phase diagram in

Fig. 2(d). We observe that, remarkably, T̃c(45o) coincides
with the Tc of a single monolayer which can be as high
as 90 K in carefully prepared Bi2212 flakes. Away from
the ideal 45o twist, the critical temperature falls approx-
imately as T̃c(✓) ' Tc(1 � |✓ � ⇡/4|/2K0). Microscopic
models with realistic Bi2212 parameters discussed in the
following give typical values K0 ' 0.1 � 0.2, implying a
significant extent for the topological phase, as indicated
in Fig. 2(d).

MICROSCOPIC MODELS

We now turn to the microscopic theory. Although the
pairing mechanism in high-Tc cuprates remains a sub-
ject of debate, it is widely accepted that most physi-
cal properties of the superconducting state in the op-
timally doped and overdoped regime are accurately de-
scribed within the framework of the standard BCS theory
with a dx2�y2 order parameter. Therefore, we begin by
modeling the twisted bilayer using a simple continuum
model of coupled d-wave superconductors, and comple-
ment this with a calculation based on an attractive Hub-
bard model on the square lattice. The continuum formu-
lation has the advantage of being applicable to an arbi-
trary twist angle ✓, similar to the Bistritzer-MacDonald
model for graphene [8]. In contrast with the continuum
model above, the lattice calculation captures various mi-
croscopic details of CuO2 planes more e↵ectively, such as
the shape of the Fermi surface. It is, however, limited to
commensurate twist angles that produce relatively small
Moiré unit cells due to practical constraints.

In keeping with the strategy outlined above, we begin
with a single CuO2 plane per monolayer, as for Bi2201.
The continuum theory for such a bilayer is defined by the

Time-reversal broken phase for any φ ≠ 0, π

(dx2−y2 + eiϕdxy)
' (dx2−y2 + e−iϕdxy)

π/40 π/2
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θ θ+
cθ−

c

T/
T c

TSC

dSC dSC



dx2−y2 + idxy

Consider a long strip geometry: 

4. Topological superconductivity, protected edge modes 

-3 -2 -1 1 2 3

-6

-4

-2

2

4

6

kx

ϵk

ω

kx

Spectral function 
A(kx, ω)

kx

ω

kx

ω



5. Self-consistent theory on the lattice
5

plicity, we consider a circular Fermi surface generated by
⇠ka = ~2k2/2m � µ that remains invariant under rota-
tion, see Fig. 2(e). The problem posed by Hamiltonian
(7) is then solved by defining a four-component Nambu
spinor  k = (ck"1, c

†
�k#1, ck"2, c

†
�k#2)

T in terms of which

H =
P

k 
†
khk k+E0. Here, the Bogoliubov-de Gennes

(BdG) Hamiltonian reads

hk =

0

BB@

⇠k �k1 g 0
�⇤

k1 �⇠k 0 �g

g 0 ⇠k �k2

0 �g �⇤
k2 �⇠k

1

CCA (10)

and E0 =
P

k 2⇠k �
P

ka�kahc
†
k"ac

†
�k#ai. Diagonalizing

hk gives two pairs of energy eigenvalues ±Ek↵ (↵ = 1, 2)
for each momentum k. With the Hamiltonian (7) ex-
pressed in diagonal form, the free energy of the system
can be calculated from the standard expression

FBdG = E0 � 2kBT
X

k↵

ln [2 cosh (Ek↵/2kBT )] . (11)

By performing a systematic expansion of FBdG in powers
of the order parameter amplitudes �d, it is possible to
ascertain various coe�cients entering the GL free energy
(2). This confirms the form of the GL coe�cients B and
C deduced previously on the basis of general symmetry
arguments, and that K in Eq. (4) is positive. This cal-
culation is summarized in Methods (see also Extended
Data Fig. 1).

We proceed with a fully self-consistent solution which
follows from minimizing FBdG with respect to �ka and
can be performed for any given V, twist angle ✓ and tem-
perature T . To facilitate this calculation we assume that
the order parameters in the two layers have the same am-
plitude �d, but can di↵er in phase as in Eq. (3). Free
energy computed from Eq. (11) then shows the same
qualitative behaviour as the GL theory (4) with K > 0:
for small twist angles, FBdG(') has a single minimum at
' = 0, while for twist angles close to 45o there are always
two degenerate minima at ' = ±'min, indicating forma-
tion of a T -broken topological phase. Fig. 2(f) shows the
calculated 'min as a function of the twist angle ✓ for re-
alistic Bi2212 parameters [30–32] �d = 40 meV, g = 30
meV, ✏c = 60 meV at T = 0. We observe an excellent
agreement with the prediction of the GL theory when
K = 0.125. The BdG theory also allows us to predict the
minimum excitation gap which, in this simple model, can
be as large as 20 meV when ✓ is close to 45o.

The BdG theory can be formulated directly on the lat-
tice by starting from the Hubbard model with on-site re-
pulsion and nearest-neighbour attraction. This is known
to produce a dx2�y2 superconductor when applied to a

single CuO2 monolayer. The Hamiltonian is

H = �

X

ij,�a

tijc
†
i�acj�a � µ

X

i�a

ni�a

+
X

ij,a

Vijnianja �

X

ij�

gijc
†
i�1cj�2, (12)

where tij encodes the normal-state band structure of the
single layer, gij describes the interlayer tunneling and
Vij denotes density-density interactions. The mean-field
calculations are performed in bilayer geometries charac-
terized by a twist vector v = (m,n) and commensurate
twist angle ✓m,n = 2arctan (m/n) as explained in Meth-
ods and Extended Data Fig. 2. Our main results are
summarized in Fig. 3. These lend further support to
our conclusions drawn on the basis of the GL and con-
tinuum BdG approaches and show additional interesting
features.

The lattice model confirms the onset of the T -breaking
phase below critical temperature T̃c(✓) whose dependence
on ✓ is consistent with the GL prediction, see Fig. 3(a,b).
The results are in reasonable quantitative agreement with
the continuum BdG theory but the lattice model gives a
smaller spectral gap. This may be attributed to more
complicated Fermi surface geometry resulting from Bril-
louin zone folding that accompanies the large real-space
Moiré unit cell. The lattice model allows for a direct eval-
uation of the Chern number C, as discussed in Methods.
In addition to the C = 4 topological phase anticipated on
the basis of the continuum BdG theory, the T = 0 phase
diagrams in Fig. 3(c-e) reveal the existence of C = 2 and
C = 0 gapped phases that can be reached by varying the
chemical potential µ and the interlayer coupling strength
g0. In an experiment, the former can be tuned over a
wide range by oxygen annealing [1], while the latter may
depend on the twist angle ✓ and could be further con-
trolled by applying hydrostatic pressure as demonstrated
in twisted graphene [4]. As explained in Methods, the
C = 0 phase corresponds to a d + is superconductor,
while the C = 2 phase can be e↵ectively thought of as a
single-layer d + id

0 superconductor as illustrated in Ex-
tended Data Fig. 3. For a strip geometry, the lattice
model predicts protected chiral edge modes traversing
the bulk gap, Fig. 3(g,h), confirming the topological na-
ture of the d+ id

0 phase.

Extensions of our models to systems with multiple
CuO2 planes per unit cell and to non-zero temperature T
is given in Methods with key results summarized in Ex-
tended Data Figs. 5 and 6. As we discuss in more detail
below, all these phenomena are experimentally accessible
using standard spectroscopic, thermodynamic and trans-
port techniques.

Hubbard model with nn attraction and on-site repulsion

Solve using standard mean-field decoupling in the 
pairing channel for commensurate twist angles


θm,n = 2 arctan(m /n)

a)   b) c)

θ/2

θ1,2 ≃ 53.13o θ2,5 ≃ 43.60o θ5,12 ≃ 45.24o

10 64 338
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FIG. 3. Lattice model results. Panels (a,b) show the temperature dependence of the minimum gap �min, the maximum
gap �max and phase ', based on a fully self-consistent lattice calculation for coupled layers with commensurate twist angles
✓1,2 ' 53.13o, and ✓2,5 ' 43.60o corresponding to a unit cell with 10 and 58 sites, respectively. Panels (c-e) show zero
temperature phase diagrams of the system for three twist angles as a function of chemical potential µ and interlayer coupling
g0. The range of chemical potentials µ 2 (�1.6t,�1.0t) correspond to range of fillings n 2 (0.033, 0.04) near optimal doping.
Each data point in the phase diagram corresponds to an independent self-consistent solution and the radius of markers is
proportional to the size of the minimum gap �min. The color indicates the Chern number as shown in the legend. Panel (f)
displays tunneling conductance �(E)/�N calculated for ✓ ' 53.13o, µ/t = �1.3, g0 = 20meV and temperatures ranging from 0
to 1.2Tc as indicated by color scale. Curves for di↵erent temperatures have been o↵set for clarity. Panels (g) and (h) illustrate
the edge modes for C = 4 and C = 2 topological phases, respectively, in ✓2,5 configuration for parameters µ = �1.3t and
g0 = 20, 52 meV. The energy spectrum is shown for a bilayer system in the infinite strip geometry with width of 90 unit cells.
The color scale represents the normalized position expectation value of the eigenstate along the direction of finite length.

Hamiltonian

H =
X

k�a

⇠kac
†
k�ack�a + g

X

k�

⇣
c
†
k�1ck�2 + h.c.

⌘
(7)

+
X

ka

⇣
�kac

†
k"ac

†
�k#a + h.c.

⌘
�

X

ka

�kahc
†
k"ac

†
�k#ai.

Here, c†k�a creates an electron with crystal momentum k
and spin � in layer a = 1, 2 while ⇠ka and g represent the
in-plane kinetic energy and inter-plane tunneling ampli-
tude, respectively. The superconducting order parameter
in layer a can then be expressed as

�ka =
X

p

0
V

(a)
kp hc�p#acp"ai. (8)

The prime on the summation indicates a restriction to

momentum states with energy within ✏c of the Fermi
level. The Hamiltonian (7) should be regarded as a mean-
field approximation to the BCS pairing Hamiltonian with

an interaction term
P

kp V
(a)
kp c

†
k"ac

†
�k#ac�p#acp"a, where

V
(a)
kp denotes the interaction matrix element in layer a.

We shall use a simple separable form

V
(a)
kp = �2V cos (2↵k) cos (2↵p), (9)

where ↵k represents the polar angle of the vector k. This
is known to yield a robust solution with dx2�y2 symmetry
for a single CuO2 layer, namely �ka = �d cos (2↵k).
In order to incorporate the twist, we take the in-

teraction in layer 1 as in Eq. (9), but we rotate the

interaction in layer 2 by angle ✓ such that V
(2)
kp =

�2V cos (2↵k � 2✓) cos (2↵p � 2✓). For the sake of sim-

Self-consistent theory on the lattice 
Tunneling density of states and edge modes

C=4 C=2
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Magic angles and current-induced topology in twisted nodal superconductors
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Motivated by the recent achievements in the realization of strongly correlated and topological
phases in twisted van der Waals heterostructures, we study the low-energy properties of a twisted
bilayer of nodal superconductors. It is demonstrated that the spectrum of the superconducting Dirac
quasiparticles close to the gap nodes is strongly renormalized by twisting and can be controlled with
magnetic fields, current, or interlayer voltage. In particular, the application of an interlayer current
transforms the system into a topological superconductor, opening a topological gap and resulting
in a quantized thermal Hall e↵ect with gapless, neutral edge modes. Close to the “magic angle,”
where the Dirac velocity of the quasiparticles is found to vanish, a correlated superconducting state
breaking time-reversal symmetry is shown to emerge. Estimates for a number of superconducting
materials, such as cuprate, heavy fermion, and organic nodal superconductors, show that twisted
bilayers of nodal superconductors can be readily realized with current experimental techniques.

Introduction: Controlling the properties and phases of
the neutral Bogoliubov-de Gennes (BdG) quasiparticles
in superconductors [1, 2] is an outstanding challenge in
condensed matter physics. In particular, topologically
nontrivial BdG bands [3, 4] hold hold the promise of host-
ing the exotic Majorana fermion excitations [5, 6] that
can be used to perform topological quantum computa-
tion [7]. Moreover, the impact of interactions between
the BdG quasiparticles on experimental observations has
remained poorly understood even though they are ex-
pected to play an important role in nodal [8–13], topo-
logical [14], and strongly correlated [15–18] superconduc-
tors. However, despite many considered materials [19–23]
and nanostructure setups [5, 24–27], the controlled real-
ization of topological and correlated phases of the BdG
quasiparticles remains an open problem. Fundamentally,
low-energy BdG quasiparticles are composed of a particle
and a hole and are therefore charge neutral [1, 2], lim-
iting the utility of electric-field based control commonly
used in various semiconductor applications.

Recently, a new paradigm in the engineering of cor-
related and topological phases has emerged [28], known
as“twistronics” [29] or moiré materials [30], that utilizes
stacking of two-dimensional materials with an interlayer
rotation (i.e. twist as in Fig. 1) to achieve novel proper-
ties [31]. Motivated by the discoveries of correlated insu-
lators and superconductivity in twisted bilayer graphene
(TBG) [32–35], twisting has been applied to construct
multilayer devices based on graphene [36–39] and tran-
sition metal dichalgonides [40–44]; extensions to topo-
logical surface states [45, 46] and ultra-cold gases [47–
49] have been also proposed. In addition to correlation-
driven phases, twistronics has been instrumental in real-
izing topological phases, such as the Chern insulator [37–
39, 50].

Here, we demonstrate that twisted bilayers of two-
dimensional nodal superconductors (TBSC) can realize
topological and interacting superconducting phases that

are tunable by experimentally accessible parameters such
as applied current, magnetic field, or voltage. The Dirac
velocity of the BdG quasiparticles near the zeros of the
excitation gap (i.e. nodes) is strongly renormalized by
the interlayer tunneling and vanishes at a “magic” value
of twist angle where a quadratic band touching-type dis-
persion is found. Displacement field between the layers,
Zeeman splitting and an in-plane current can be all used
to tune the dispersion, bringing the Dirac dispersion back
or creating a BdG Fermi surface. Applying an interlayer
current results in a fully gapped topological supercon-
ducting state at any nonzero twist angle (even away from
the magic value) with a quantized thermal Hall e↵ect,
similar to that of chiral superconductors [51, 52], while
an in-plane magnetic field creates a network of topolog-
ical domains with alternating Chern numbers and chiral
edge modes between them. Finally, close to the magic
angle even weak interactions between the BdG quasipar-
ticles are shown to result in a (secondary) instability to a
time-reversal symmetry breaking superconducting state.
The recently demonstrated superconductivity in mono-
layers of high-Tc cuprates [53] shows that this platform
is accessible to current experimental investigation, and
we discuss a number of other candidate materials.
Magic angle in twisted nodal superconductor bilayers:

We first construct a continuum low-energy model of the
TBSC (illustrated in Fig. 1 (a) for the case of a d-wave
superconductor with a cuprate-like Fermi surface). For a
single layer, the quasiparticles in the vicinity of the gap
node momentum KN on the Fermi surface are described
by the Dirac Hamiltonian in the Gor’kov-Nambu space:

HN (k) = vF · k⌧3 + v� · k�̂, (1)

where v� = @k�(k = KN ); �̂ = ⌧1 for a singlet SC and
�̂ = (d(k) · s)⌧1, d2(k) = 1 for a triplet SC.
For the twisted bilayer, we follow the approach of

Refs. [31, 54] to include the e↵ect of the interlayer elec-
tron tunneling t(r�r0)c†1,s(r)c2,s(r

0)+H.c., where 1 and 2
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FIG. 1. Magic-angles in twisted nodal superconduc-
tors. (a) Momentum-space schematic of a twisted nodal
superconductor (by angle ✓) exemplified by a d-wave super-
conductor with a sign changing gap (from blue to red). (b)
Near the nodes (KN and K̃N ) the BdG quasiparticles of the
two layers have a Dirac cone dispersion shifted by a vector
QN (= ✓KN ) with respect to one another. (c) Evolution of
the low-energy BdG band structure near a node in presence
of interlayer hybridization: on increasing the twist angle ✓,
the Dirac points move towards one another, merging into a
quadratic band touching (QBT) at ✓ = ✓MA; for ✓ > ✓MA,
they separate in the orthogonal direction in the Brillouin zone.
Dashed (solid) lines mark the unhybridized (hybridized at
✓ = 0) Fermi surfaces of the two layers, kk is along vF at
✓ = 0 and k? is along QN .

stand for two layers and s for the spin index. At low twist
angles ✓ ⌧ 1, the tunneling occurs between the states
with momenta k and k̃ related by k�k̃ = �✓[ẑ⇥(k+G)]
with an amplitude t(k + G), where t(q) is the Fourier
transform of t(r � r0) and G is an inverse lattice vec-
tor. Unlike graphene, the position of the Dirac node in a
nodal SC is not fixed to a high-symmetry point and thus
|KN + G| > |KN |. Assuming further t(q) to decay on
the scale of |G| as a function of the in-plane momentum
q [31, 54] we arrive at the conclusion, that for a generic
node position within the Brillouin zone, tunneling with
G 6= 0 near KN can be neglected.[55].

In momentum space, the tunneling then takes the form
t[c†1,s(k �QN )c2,s(k) +H.c.], where QN = �✓[ẑ ⇥KN ]
and t = t(KN )/⌦, ⌦ being the unit cell area [31].
The full Hamiltonian can then be written as two copies
of the node Hamiltonian (1) with a momentum shift

HN (k ± QN/2) [Fig.1 (b)] coupled by the tunneling t.
Furthermore, in most of the known cases of nodal super-
conductors [56–58], the nodes are required by symmetry
to be in a reflection plane, such that vF k KN while
v� k QN ? KN . Using the notation �i for Pauli matri-
ces acting in the layer space we obtain for this case:

H(k) = vF kk⌧3 + v�k?�̂� 1

2
v�✓KN �̂�3 + t⌧3�1, (2)

where kk is alongKN and k? is alongQN . The first three
terms represent the Hamiltonian of the shifted nodes in
each layer while the last term describes the tunneling be-
tween them. Note that Eq. (S8) does not result from a
truncation of the Hamiltonian in momentum space [31]
and thus its applicability is not limited to t ⌧ v�✓KN .
Additionally, for the case of nodes not being in a re-
flection plane, relevant for, e.g., nodal s-wave states in
Fe-based superconductors [59, 60], vF and v� in (S8)
are replaced with their projections along KN and QN ,
respectively, and an additional term 1

2 (vF ·QN )�3⌧3 ap-
pears. The e↵ect of this term on the dispersion can be
important close to the magic angle and will be analyzed
below, but first we focus on (S8) itself.
We now discuss the evolution of the quasiparticle spec-

trum of TBSC as a function of the twist angle [Fig. 1(c)].
The eigenenergies of Eq. (S8) are given by

E2
±(k) = (vF kk)

2 + (v�k?)
2 + t2(1 + ↵2)

±2t
q

(vF kk)2 + (v�k?)2↵2 + t2↵2,
(3)

where ↵ = v�✓KN
2t is the dimensionless parameter char-

acterizing the twist angle. In the absence of a twist,
the Fermi surfaces of the two layers overlap and are ex-
pected to hybridize forming bonding and antibonding
Fermi surfaces, the nodes being where the high-symmetry
line crosses each [Fig. 1(c), left panel]. Indeed, for ↵ = 0
(i.e. ✓ = 0) one recovers from (3) two anisotropic Dirac
cones at kk = ±t/vF , k? = 0 with the energies given by

E2
0,±(k) = v2

F
(kk ± t/vF )

2 + v2�k
2
?, (4)

where one observes that the Dirac velocities are the
same as in the case of a single layer (1). On increas-
ing the twist angle, one finds two Dirac cones at kk =

±
p
1� ↵2t/vF , k? = 0 for ↵ < 1, and two Dirac cones

at kk = 0, k? = ±
p
1� ↵�2t/v� for ↵ > 1. Near each

of the nodes, the spectrum has a linear dispersion sim-
ilar to Eq. (4) with the velocities vF,� replaced by the
renormalized velocities

ṽF,� =
p
1�min{↵2,↵�2}vF,�. (5)

Thus, on increasing the twist angle, the nodes initially
move toward one another along kk and become more
hybridized [Fig. 1(c)] while at high twist angles ↵ > 1

6

the topology of the state. For example, for an s-wave sec-
ondary instability, the order parameter sign will remain
the same, resulting in a total zero Chern number, similar
to the quantum valley Hall state in TBG [79]. On the
other hand, for a dxy instability in a dx2�y2 TBSC, the
resulting state will have Chern number equal to the num-
ber of nodes, similar to the supercurrent-induced state
discussed above.

The results above for the Â = ⌧2 instability apply
also to the triplet TBSC case. Unlike the singlet case,
Â = ⌧1(h · s) has a weak-coupling instability only for
h ? d, which has the same susceptibility as �⌧2 . Above
we considered the order parameters that do not break
translational symmetry; in principle, order parameters
such as spin-, charge-, or pair-density waves can couple
di↵erent nodes, opening a gap. However, their proper-
ties would likely depend on the particular Fermi surface
geometry and hence we leave the consideration of these
order parameters for future studies focused on specific
materials.

Away from the magic angle, the spectrum has Dirac
nodes instead of a QBT; while no weak-coupling insta-
bility is expected, one expects the secondary instability
temperature T ⇤ to remain finite close to the magic-angle.
The equation for T ⇤(✓) for the ⌧2 order parameter is given
by

log
T ⇤(✓)

T ⇤
0

=

Z 1

0
d"

Z 2⇡

0

d⌘

2⇡

h
�

tanh "

2T⇤

"

+
tanh

p
"2�2t|↵�1|" cos(2⌘)+t2(↵�1)2

2T⇤p
"2 � 2t|↵� 1|" cos(2⌘) + t2(↵� 1)2

i
.

(10)

The results of a numerical solution of Eq. (10) are pre-
sented in Fig. 3; the critical temperature is found to van-
ish for the deviation from magic-angle larger than a crit-

ical one: |✓ � ✓MA|c = 2⇡e�� ✓MAT
⇤
0

t
.

Discussion: Let us briefly recall our findings, focusing
on the predictions for experiments. The reduction of the
quasiparticle Dirac velocity Eq. (5) and the gap open-
ing induced by the current, magnetic field [Fig. 2(a,d)]
or interaction e↵ects [Fig. 3] near ✓MA = 2t/(v�KN )
a↵ect the quasiparticle density of states and can be
directly revealed with scanning tunneling microscopy
(STM) and thermal transport experiments. Alterna-
tively, angle-resolved photoemission spectroscopy can de-
tect the change in the position of nodes with the twist an-
gle [Fig. 1(c)]. STM or superconducting spectroscopy [80]
can also reveal the gapless chiral edge modes in the topo-
logical SC state [Fig. 2(a,d)]. For the current-induced
state, the most striking signature of the edge modes is
the quantized thermal (and spin, for the singlet case)
Hall conductances [51].

The value of ✓MA being of the order of t/�0, where �0

is the maximal SC gap value, implies that for the obser-
vation of strong twist e↵ects in TBSC the interlayer hy-
bridization much weaker than�0 is preferred. Reducing t

T

��MA

T
c

T
*

T
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FIG. 3. Bogoliubov-de Gennes quasiparticle interac-
tion induced instability near the magic-angle. Critical
temperature of the correlation induced order away from the
magic angle. T ⇤ is suppressed as the deviation |✓ � ✓MA|
grows, vanishing at ✓±c = ✓MA ± 2⇡e�� ✓MAT⇤

0
t .

can be practically achieved by introducing an insulating
barrier between the two layers, similar to conventional
Josephson junctions. In our study we found the e↵ects
of hybridization to be most pronounced at ✓MA, and sup-
pressed if the twist angle is further increased (see, e.g.,
Eqs. 5,S15). On the other hand, increasing the twist an-
gle between nodal superconductors is known to suppress
the critical superconducting current at small t, eventu-
ally suppressing it to zero at special angles dictated by
symmetry (e.g., 45� in a d-wave superconductor). This
dramatically alters the current-phase relation I(') allow-
ing the subdominant e↵ect to become important; in par-
ticular, a spontaneous phase transition into the chiral
topological SC state breaking time-reversal symmetry is
predicted [81–84]. However, the spontaneously generated
topological gap should be smaller than the one induced
by an interlayer current at the magic angle since it is
an e↵ect of higher order expansion in t. On dimensional
grounds, one expects the gap to be of the order t2/�0,
consistent with Eq. (S15).
Another important question is that of disorder, as

the nodal superconductors are usually strongly a↵ected
by it [85] due to the presence of gapless excitations
close to the gap nodes. Consequently, we expect the
gapped states of TBSC to be robust against weak disor-
der. In particular, the current-induced topological state
[Fig. 2(a)] is expected to be protected against weak to
moderate disorder as the Chern number can not change
continuously [3, 86]. Similar reasoning applies to the
case of temperature; for T ⌧ �J thermal e↵ects can
be ignored. On the other hand, temperature provides an
additional control parameter, as the value of v� should
decrease with temperature, vanishing at Tc. An increas-
ing temperature consequently leads to an enhanced ✓MA

value, which can be used to achieve magic-angle condi-
tions if the device is initially at ✓ > ✓MA(T = 0). It will
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Motivated by the recent achievements in the realization of strongly correlated and topological
phases in twisted van der Waals heterostructures, we study the low-energy properties of a twisted
bilayer of nodal superconductors. It is demonstrated that the spectrum of the superconducting Dirac
quasiparticles close to the gap nodes is strongly renormalized by twisting and can be controlled with
magnetic fields, current, or interlayer voltage. In particular, the application of an interlayer current
transforms the system into a topological superconductor, opening a topological gap and resulting
in a quantized thermal Hall e↵ect with gapless, neutral edge modes. Close to the “magic angle,”
where the Dirac velocity of the quasiparticles is found to vanish, a correlated superconducting state
breaking time-reversal symmetry is shown to emerge. Estimates for a number of superconducting
materials, such as cuprate, heavy fermion, and organic nodal superconductors, show that twisted
bilayers of nodal superconductors can be readily realized with current experimental techniques.

Introduction: Controlling the properties and phases of
the neutral Bogoliubov-de Gennes (BdG) quasiparticles
in superconductors [1, 2] is an outstanding challenge in
condensed matter physics. In particular, topologically
nontrivial BdG bands [3, 4] hold hold the promise of host-
ing the exotic Majorana fermion excitations [5, 6] that
can be used to perform topological quantum computa-
tion [7]. Moreover, the impact of interactions between
the BdG quasiparticles on experimental observations has
remained poorly understood even though they are ex-
pected to play an important role in nodal [8–13], topo-
logical [14], and strongly correlated [15–18] superconduc-
tors. However, despite many considered materials [19–23]
and nanostructure setups [5, 24–27], the controlled real-
ization of topological and correlated phases of the BdG
quasiparticles remains an open problem. Fundamentally,
low-energy BdG quasiparticles are composed of a particle
and a hole and are therefore charge neutral [1, 2], lim-
iting the utility of electric-field based control commonly
used in various semiconductor applications.

Recently, a new paradigm in the engineering of cor-
related and topological phases has emerged [28], known
as“twistronics” [29] or moiré materials [30], that utilizes
stacking of two-dimensional materials with an interlayer
rotation (i.e. twist as in Fig. 1) to achieve novel proper-
ties [31]. Motivated by the discoveries of correlated insu-
lators and superconductivity in twisted bilayer graphene
(TBG) [32–35], twisting has been applied to construct
multilayer devices based on graphene [36–39] and tran-
sition metal dichalgonides [40–44]; extensions to topo-
logical surface states [45, 46] and ultra-cold gases [47–
49] have been also proposed. In addition to correlation-
driven phases, twistronics has been instrumental in real-
izing topological phases, such as the Chern insulator [37–
39, 50].

Here, we demonstrate that twisted bilayers of two-
dimensional nodal superconductors (TBSC) can realize
topological and interacting superconducting phases that

are tunable by experimentally accessible parameters such
as applied current, magnetic field, or voltage. The Dirac
velocity of the BdG quasiparticles near the zeros of the
excitation gap (i.e. nodes) is strongly renormalized by
the interlayer tunneling and vanishes at a “magic” value
of twist angle where a quadratic band touching-type dis-
persion is found. Displacement field between the layers,
Zeeman splitting and an in-plane current can be all used
to tune the dispersion, bringing the Dirac dispersion back
or creating a BdG Fermi surface. Applying an interlayer
current results in a fully gapped topological supercon-
ducting state at any nonzero twist angle (even away from
the magic value) with a quantized thermal Hall e↵ect,
similar to that of chiral superconductors [51, 52], while
an in-plane magnetic field creates a network of topolog-
ical domains with alternating Chern numbers and chiral
edge modes between them. Finally, close to the magic
angle even weak interactions between the BdG quasipar-
ticles are shown to result in a (secondary) instability to a
time-reversal symmetry breaking superconducting state.
The recently demonstrated superconductivity in mono-
layers of high-Tc cuprates [53] shows that this platform
is accessible to current experimental investigation, and
we discuss a number of other candidate materials.
Magic angle in twisted nodal superconductor bilayers:

We first construct a continuum low-energy model of the
TBSC (illustrated in Fig. 1 (a) for the case of a d-wave
superconductor with a cuprate-like Fermi surface). For a
single layer, the quasiparticles in the vicinity of the gap
node momentum KN on the Fermi surface are described
by the Dirac Hamiltonian in the Gor’kov-Nambu space:

HN (k) = vF · k⌧3 + v� · k�̂, (1)

where v� = @k�(k = KN ); �̂ = ⌧1 for a singlet SC and
�̂ = (d(k) · s)⌧1, d2(k) = 1 for a triplet SC.
For the twisted bilayer, we follow the approach of

Refs. [31, 54] to include the e↵ect of the interlayer elec-
tron tunneling t(r�r0)c†1,s(r)c2,s(r

0)+H.c., where 1 and 2
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Figure 1: Twist Josephson junctions with intrinsic junction quality. A. Schematic of the key
fabrication step, where a single BSCCO crystal is cleaved using PDMS below -90� C. B. Opti-
cal micrograph of a BSCCO twist junction. Dashes outline identical shapes of the two crystals.
Corresponding schematic in upper inset of H. C. Atomic force microscope topography show-
ing atomically flat interface. Line trace shows topography along dotted line. D. Cross-sectional
dark field scanning TEM image of ✓ = 45� junction, showing bulk-like crystalline order at the
interface. Bright spots are columns of atoms identified in the upper right corner. E. Integrated
intensity of each layer. F. Fourier transform of TEM line cuts at BiO layers, showing atomi-
cally sharp transition in lattice constants at the interface. G. BiO layer lattice periodicity and
peak width from peak fitting of F, whose fluctuations are within 0.05% with peak width at FFT
resolution (0.014 nm�1). H. In-plane resistance in each bulk crystal vs resistance through the
artificial junction between them, showing nearly identical junction TC . Lower Inset shows TC

distribution among all 24 JJs in the angle dependence analysis. G. I � V curve for a ✓ = 0�

junction in both sweep directions (arrows). Blue triangle highlights JC comparable to intrinsic
junctions. Green triangles highlight inelastic scattering features seen at the same voltages in
intrinsic junctions (15).
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Figure 1: Twist Josephson junctions with intrinsic junction quality. A. Schematic of the key
fabrication step, where a single BSCCO crystal is cleaved using PDMS below -90� C. B. Opti-
cal micrograph of a BSCCO twist junction. Dashes outline identical shapes of the two crystals.
Corresponding schematic in upper inset of H. C. Atomic force microscope topography show-
ing atomically flat interface. Line trace shows topography along dotted line. D. Cross-sectional
dark field scanning TEM image of ✓ = 45� junction, showing bulk-like crystalline order at the
interface. Bright spots are columns of atoms identified in the upper right corner. E. Integrated
intensity of each layer. F. Fourier transform of TEM line cuts at BiO layers, showing atomi-
cally sharp transition in lattice constants at the interface. G. BiO layer lattice periodicity and
peak width from peak fitting of F, whose fluctuations are within 0.05% with peak width at FFT
resolution (0.014 nm�1). H. In-plane resistance in each bulk crystal vs resistance through the
artificial junction between them, showing nearly identical junction TC . Lower Inset shows TC

distribution among all 24 JJs in the angle dependence analysis. G. I � V curve for a ✓ = 0�

junction in both sweep directions (arrows). Blue triangle highlights JC comparable to intrinsic
junctions. Green triangles highlight inelastic scattering features seen at the same voltages in
intrinsic junctions (15).
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Figure 2: d-wave SOP symmetry revealed by supercurrent tunneling. A. Normalized dif-
ferential resistance [dV/dI]/RN vs. characteristic voltage IRN and temperature T . Current
is swept to the right. Blue arrows highlight ICRN . B. Angular dependence of ICRN for all
devices at 30 and 12 K. The points follow the | cos(2✓̃)| curve predicted for nearly incoher-
ent tunneling between d-wave superconductors (14). Inset: Schematic diagram of the Fermi
surface of both crystals, with sign and magnitude of superconducting gap �(~k) superposed in
color. At ✓ > 10�, Fermi surfaces intersects at two points per quadrant (circles) with different
relative signs of SOPs. C. Temperature dependence of the critical current for select devices.
Dotted lines are linear fits to the low temperature data. TM is temperature where IC is maximal.
Grey theory line shows expected ICRN(T ) behavior (see Section S5). D. The slope of the low
temperature linear fit, d(ICRN)/dT . E. TM as a function of angle ✓̃.

junctions (28). We observe small voltage jumps on the retrapping side (green triangles) at the

same voltages as inelastic tunneling features previously observed in intrinsic BSCCO JJs (15).

These observations indicate that our ✓ = 0� JJ reaches electronic quality comparable to intrinsic

JJ in single-crystal BSCCO.

To compare transport characteristics of different twisted JJs, we normalized the bias current

I with the junction normal resistance RN . Since IC and R�1
N are proportional to the area of the

junction, the product ICRN is independent of junction area. Figure 2A shows the normalized

dynamic resistance [dV/dI]/RN as a function of T and IRN at ✓ = 0�, 31�, and 44.9�, respec-
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Figure 2: d-wave SOP symmetry revealed by supercurrent tunneling. A. Normalized dif-
ferential resistance [dV/dI]/RN vs. characteristic voltage IRN and temperature T . Current
is swept to the right. Blue arrows highlight ICRN . B. Angular dependence of ICRN for all
devices at 30 and 12 K. The points follow the | cos(2✓̃)| curve predicted for nearly incoher-
ent tunneling between d-wave superconductors (14). Inset: Schematic diagram of the Fermi
surface of both crystals, with sign and magnitude of superconducting gap �(~k) superposed in
color. At ✓ > 10�, Fermi surfaces intersects at two points per quadrant (circles) with different
relative signs of SOPs. C. Temperature dependence of the critical current for select devices.
Dotted lines are linear fits to the low temperature data. TM is temperature where IC is maximal.
Grey theory line shows expected ICRN(T ) behavior (see Section S5). D. The slope of the low
temperature linear fit, d(ICRN)/dT . E. TM as a function of angle ✓̃.

junctions (28). We observe small voltage jumps on the retrapping side (green triangles) at the

same voltages as inelastic tunneling features previously observed in intrinsic BSCCO JJs (15).

These observations indicate that our ✓ = 0� JJ reaches electronic quality comparable to intrinsic

JJ in single-crystal BSCCO.

To compare transport characteristics of different twisted JJs, we normalized the bias current

I with the junction normal resistance RN . Since IC and R�1
N are proportional to the area of the

junction, the product ICRN is independent of junction area. Figure 2A shows the normalized

dynamic resistance [dV/dI]/RN as a function of T and IRN at ✓ = 0�, 31�, and 44.9�, respec-
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FIG. 3. Lattice model results. Panels (a,b) show the temperature dependence of the minimum gap �min, the maximum
gap �max and phase ', based on a fully self-consistent lattice calculation for coupled layers with commensurate twist angles
✓1,2 ' 53.13o, and ✓2,5 ' 43.60o corresponding to a unit cell with 10 and 58 sites, respectively. Panels (c-e) show zero
temperature phase diagrams of the system for three twist angles as a function of chemical potential µ and interlayer coupling
g0. The range of chemical potentials µ 2 (�1.6t,�1.0t) correspond to range of fillings n 2 (0.033, 0.04) near optimal doping.
Each data point in the phase diagram corresponds to an independent self-consistent solution and the radius of markers is
proportional to the size of the minimum gap �min. The color indicates the Chern number as shown in the legend. Panel (f)
displays tunneling conductance �(E)/�N calculated for ✓ ' 53.13o, µ/t = �1.3, g0 = 20meV and temperatures ranging from 0
to 1.2Tc as indicated by color scale. Curves for di↵erent temperatures have been o↵set for clarity. Panels (g) and (h) illustrate
the edge modes for C = 4 and C = 2 topological phases, respectively, in ✓2,5 configuration for parameters µ = �1.3t and
g0 = 20, 52 meV. The energy spectrum is shown for a bilayer system in the infinite strip geometry with width of 90 unit cells.
The color scale represents the normalized position expectation value of the eigenstate along the direction of finite length.

Hamiltonian

H =
X

k�a

⇠kac
†
k�ack�a + g

X

k�

⇣
c
†
k�1ck�2 + h.c.

⌘
(7)

+
X

ka

⇣
�kac

†
k"ac

†
�k#a + h.c.

⌘
�

X

ka

�kahc
†
k"ac

†
�k#ai.

Here, c†k�a creates an electron with crystal momentum k
and spin � in layer a = 1, 2 while ⇠ka and g represent the
in-plane kinetic energy and inter-plane tunneling ampli-
tude, respectively. The superconducting order parameter
in layer a can then be expressed as

�ka =
X

p

0
V

(a)
kp hc�p#acp"ai. (8)

The prime on the summation indicates a restriction to

momentum states with energy within ✏c of the Fermi
level. The Hamiltonian (7) should be regarded as a mean-
field approximation to the BCS pairing Hamiltonian with

an interaction term
P

kp V
(a)
kp c

†
k"ac

†
�k#ac�p#acp"a, where

V
(a)
kp denotes the interaction matrix element in layer a.

We shall use a simple separable form

V
(a)
kp = �2V cos (2↵k) cos (2↵p), (9)

where ↵k represents the polar angle of the vector k. This
is known to yield a robust solution with dx2�y2 symmetry
for a single CuO2 layer, namely �ka = �d cos (2↵k).
In order to incorporate the twist, we take the in-

teraction in layer 1 as in Eq. (9), but we rotate the

interaction in layer 2 by angle ✓ such that V
(2)
kp =

�2V cos (2↵k � 2✓) cos (2↵p � 2✓). For the sake of sim-θ
kx

ky

Ic(T ) = ∑
k

Δk1Δk2Ω(ξk, T )

One can show that the interlayer critical current has the form

where  . In a dSC we have Ω(ξk, T ) ≥ 0

Δk1Δk2 = Δ2
0 cos(2α + θ)cos(2α − θ)
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Figure 2: d-wave SOP symmetry revealed by supercurrent tunneling. A. Normalized dif-
ferential resistance [dV/dI]/RN vs. characteristic voltage IRN and temperature T . Current
is swept to the right. Blue arrows highlight ICRN . B. Angular dependence of ICRN for all
devices at 30 and 12 K. The points follow the | cos(2✓̃)| curve predicted for nearly incoherent
tunneling between d-wave superconductors (14). Inset: Schematic diagram of the Fermi sur-
face of both crystals, with superconducting gap �(~k) sign and magnitude superposed in color.
At ✓ > 10�, Fermi surfaces intersects at two points per quadrant (circles) with different relative
signs of SOPs. C. Temperature dependence of the critical current for select devices. Dotted
lines are linear fits to the low temperature data. TM is temperature where IC is maximal. Grey
theory line shows expected ICRN(T ) behavior (see Section S5). D. The slope of the low tem-
perature linear fit, d(ICRN)/dT . E. TM as a function of angle ✓̃.

same voltages as inelastic tunneling features previously observed in intrinsic BSCCO JJs (15).

These observations indicate that our ✓ = 0� JJ reaches electronic quality comparable to intrinsic

JJ in single-crystal BSCCO.

To compare transport characteristics of different twisted JJs, we normalized the bias current

I with the junction normal resistance RN . Since IC and R�1
N are proportional to the area of the

junction, the product ICRN is independent of junction area. Figure 2A shows the normalized

dynamic resistance [dV/dI]/RN as a function of T and IRN at ✓ = 0�, 31�, and 44.9�, respec-

tively (similar data for all 24 JJs studied are shown in Fig. S3). Several features are apparent in
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We wish to understand how the anomalous increase in 
 follows from a theory of Josephson tunnelling 
between twisted d-wave superconductors.
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Effect of temperature  
• Thermal excitations break Cooper pairs and remove their contribution 

to the supercurrent.

• At low T this happens primarily in the nodal regions 

• Low-T thermal excitations therefore initially remove NEGATIVE 

contributions to  which is thus expected to INCREASE as a function 
of temperature 
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Δk1Δk2 < 0

To determine Ic it is necessary to find the maximum of I(') given by Eq. (S9). Because

the maximum is attained at a generic value of ' this can generally only be done numerically.

We find, however, that for twist angles not too close to 45o the maximum occurs near ' = ⇡/2

and one can approximate Ic ⇡ I(⇡/2) to a good accuracy. The temperature dependence of the

critical current can therefore be usefully analyzed from the expression
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Noting that by definition Ek+ > Ek� it is easy to show that the last term
P

a=±[. . . ] in the above

equation is non-negative for all temperatures T , as is Dk(⇡/2). The sign of the contribution of

each momentum k to the critical current is therefore solely determined by the product of the

two d-wave gap functions �k1�k2 = �2 cos(2↵k + ✓) cos(2↵k � ✓). It is easy to see that for

non-zero twist this product is negative in the vicinity of the Brillouin zone diagonals, i.e. the

nodal region of the original untwisted d-wave superconductor, and is positive in the rest of the

BZ. This structure provides for a simple intuitive understanding of the observed decrease in

Ic(0) with an increasing twist angle. When ✓ = 0 there are only positive contributions to Ic(0)

from the k sum and all momenta contribute coherently. On the other hand for ✓ > 0 nodal

regions begin to contribute negatively, reducing the critical current and eventually driving it to

near zero when ✓ ' 45o.

The sign structure in Eq. (S10) also helps to explain the anomalous increase in Ic(T ) at low

temperatures observed for non-zero twist angles. Nonzero temperature promotes existence of

pair-breaking excitations which tend to suppress the supercurrent. In a d-wave superconductor

low-energy excitations reside in the nodal region of the BZ meaning that at low temperatures

Cooper pairs composed of electrons with momenta in the nodal region are broken with the

highest probability. We argued above, however, that in a twisted configuration nodal regions

give a negative contribution to Ic(0). Reducing this negative contribution by thermal excitations

12

0

20

40

60

90°
����T <  45°
�����T <  90°
�����T < 135°
������T�������

0°22.5°45°

T0°
90° 45°

0

20

40

60

T
M
 (

K
)

0

0.6

-0.6

90°

0°22.5°45°
| T���45°�|

d 
[I C

R
N
] /

 d
T

 (
m

V
 / 

K
)

0

0.6

-0.6

T0°
90° 45°

| T���45°�|a

aa

0

2

4

6

8

10

12

14

16

Theory

29°

39°
44.9°

T�= 0°

TM

x5

TM

a

0

2

4

6

8

10

12

14

16

I C
 R

N
 (

m
V

)

Temperature (K)
0 20 40 60 8010 30 50 70 90

|A cos(2M)|

0

5

10

15

20

25

0

5

10

15

20

25

I C
R

N
 (

m
V

)

T� �T mod 90°
0° 22.5° 45° 67.5° 90°

30 K
12 K

0q�d�T�d����90q�
90q���T�d�180q

T

a a

-15 -10 -5 0 5 1010

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

90
0°

-15 -10 -5 0 5 10 15
10

30

50

70

90

I RN (mV)

T
em

pe
ra

tu
re

 (
K

)

-2 0 2
I RN (mV)

dV
dI RN

0

10
44.9°31°

I RN (mV)
-5 0 5IC

A

B

C

D E

Figure 2: d-wave SOP symmetry revealed by supercurrent tunneling. A. Normalized dif-
ferential resistance [dV/dI]/RN vs. characteristic voltage IRN and temperature T . Current
is swept to the right. Blue arrows highlight ICRN . B. Angular dependence of ICRN for all
devices at 30 and 12 K. The points follow the | cos(2✓̃)| curve predicted for nearly incoherent
tunneling between d-wave superconductors (14). Inset: Schematic diagram of the Fermi sur-
face of both crystals, with superconducting gap �(~k) sign and magnitude superposed in color.
At ✓ > 10�, Fermi surfaces intersects at two points per quadrant (circles) with different relative
signs of SOPs. C. Temperature dependence of the critical current for select devices. Dotted
lines are linear fits to the low temperature data. TM is temperature where IC is maximal. Grey
theory line shows expected ICRN(T ) behavior (see Section S5). D. The slope of the low tem-
perature linear fit, d(ICRN)/dT . E. TM as a function of angle ✓̃.

same voltages as inelastic tunneling features previously observed in intrinsic BSCCO JJs (15).

These observations indicate that our ✓ = 0� JJ reaches electronic quality comparable to intrinsic

JJ in single-crystal BSCCO.

To compare transport characteristics of different twisted JJs, we normalized the bias current

I with the junction normal resistance RN . Since IC and R�1
N are proportional to the area of the

junction, the product ICRN is independent of junction area. Figure 2A shows the normalized

dynamic resistance [dV/dI]/RN as a function of T and IRN at ✓ = 0�, 31�, and 44.9�, respec-

tively (similar data for all 24 JJs studied are shown in Fig. S3). Several features are apparent in
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phase bias. The order parameter amplitude � will be
determined self-consistently through the minimization of
FBdG for a given phase bias. To this end it is conve-
nient to perform a global gauge rotation (ck1, ck2) !

(ei'/4
ck1, e

�i'/4
ck2) which moves the phase from the or-

der parameter terms in Hk to the interlayer coupling
defining a transformed BdG hamiltonian

H̃k =

0

BB@

⇠k �̃k1 ge
�i'/2 0

�̃k1 �⇠k 0 �ge
i'/2

ge
i'/2 0 ⇠k �̃k2

0 �ge
�i'/2 �̃k2 �⇠k

1

CCA . (17)

Here �̃ka are defined as in Eqs. (13,14) but with the
phase factors e

±i'/2 omitted. Unless otherwise noted
we shall use this representation of the BdG Hamiltonian
henceforth, and, for the sake of brevity, we will drop the
tilde sign.

The gap equation follows from @FBdG/@� = 0 and
reads

� = 2V
X

k↵

@Ek↵

@�
tanh

1

2
�Ek↵, (18)

where � = 1/kBT is the inverse temperature. By noting
that Ek↵ = hk↵|Hk|k↵i, where |k↵i is an eigenstate of
Hk, Eq. (18) can be rewritten in a form that is more
suitable for numerical evaluation,

� = 2V
X

k↵

hk↵|
@Hk

@�
|k↵i tanh

1

2
�Ek↵. (19)

Here @Hk/@� is a fixed 4⇥4 matrix that follows from Eq.
(17) and the required matrix element is easily evaluated
from the knowledge of the eigenstates. For any chosen
phase ' and temperature T the gap equation is then
solved by iteration starting from a suitable guess for �.

Similarly, by di↵erentiating with respect to ' as in Eq.
(5), it is possible to derive a convenient expression for
the interlayer supercurrent

J(') = �
2e

~
X

k↵

hk↵|
@Hk

@'
|k↵i tanh

1

2
�Ek↵. (20)

In the following, we will denote all quantities in units
where 2e/~ = 1. For purposes of numerical evaluation
the momentum sums in Eqs. (18-20) are converted into
integrals using the standard procedure summarized in
Appendix B.

III. TEMPERATURE DEPENDENCE OF
CRITICAL CURRENT

A. Current-phase relation

In the cuprates individual monolayers are very weakly
coupled, implying that g ⌧ µ in our model. Correspond-
ingly, the interlayer coupling is a weak perturbation on
the SC order parameter amplitude and indeed we find
that self-consistently determined � is essentially inde-
pendent of the phase di↵erence '. In the results reported
below we use the full phase and temperature dependent
� but the same results are obtained if the ' dependence
were ignored. The temperature dependence, however,
cannot be ignored since � ! 0 as T approaches Tc.

Typical current-phase relations obtained for parame-
ters relevant to Bi2212 are displayed in Fig. 2. At zero
twist angle, not surprisingly, we obtain what looks like a
conventional sinusoidal J(') at all temperatures. A fit
to Eq. (6) reveals that a small Jc2 term is required to
fit the data at low T . In order to achieve a close fit we
add a third harmonic, �Jc3 sin(3'). The obtained Jc3 is
generally two orders of magnitude smaller than Jc1,2 and

Calculation results: 
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Figure 4: Half-integer Shapiro steps emerge close to ✓ = 45�. A. dV/dI as a function of
voltage across the junction and microwave illumination power P 1/2

RF at 70 K. dV/dI dips (white,
pink) correspond to Shapiro steps. Inset shows I-V characteristic with half-integer Shapiro
steps. B. and C. show the Fourier transform of dV/dI(V ) and the spectral power at ⌫f = 1
and 2 · 2e/hf . Inset shows schematic of the junction free energy F vs Josephson phase ' as
twist angle changes. At 45�, the second harmonic dominates the current-phase relation. D,
F and G shows similar data for a 43.7� device, where only integer Shapiro steps appear. E.
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integer. We observe these conventional integer Shapiro steps in the JJs substantially away from

✓̃ = ⇡/4, as shown in the ✓ = 43.7� device (Fig. 4D). Consistent with the FIP discussed above,

the experimentally observed Shapiro steps also show signatures of the second harmonic CPR as

✓̃ approaches ⇡/4 (Fig. 4E); specifically, when our devices are within (45±1)�, additional steps

at half-integer n appear. As shown in Fig. 4A (✓ = 44.6� as an example), a series of dV/dI dips

which correspond to the steps in I-V appear at both integer and half-integer n across a wide

range of microwave power.
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FIG. 6. a) Current-Voltage curves in the 45� twisted configuration in the presence of an external rf drive with amplitude
Jrf = 0.7 at three di↵erent frequencies. The voltage is scaled in units of ~!/2e to highlight the Shapiro steps and the lowest
four fractional steps are indicated with the horizontal dashed lines. b-c) Voltage as a function of drive current for two twists
that are in the topological and trivial phases respectively, with ! = 0.6. The color bar indicates step amplitudes. Since the
numerical values of Jc1,2 at di↵erent twists vary widely, to aid comparison, J(') is normalized such that the critical current in
the absence of rf drive (Jrf = 0) is unity (or equivalently the zeroth order step has width 2). Clearly, fractional steps appear
only for twist angles close to 45�, as in panel b). At high rf currents, one enters a regime where the step amplitudes oscillate.
The temperature is fixed at T = 0.5Tc and R = 0.7 in all simulations.

VI. SHAPIRO STEPS

Topological superconductivity with a dominant second
harmonic in the current-phase relation can also be made
manifest by subjecting the system to an external drive. If
a Josephson junction is irradiated with a radio-frequency
source, an AC voltage is induced that frequency modu-
lates the AC Josephson current. When the dynamics of
the junction is phase-locked to the rf drive, the super-
current shows constant voltage Shapiro steps at voltages
Vn = n~!/2e, where ! is frequency of the radiation and
n 2 Z is the step index [30]. In a ⇡ periodic junction, ad-
ditional steps appear at fractional values Vn/2, which are
a direct manifestation of a dominant second harmonic in
the current-phase relation.

In a usual experiment, the time-averaged voltage is
measured in response to a current bias. In order to study
the dynamics of such a current driven system, it is con-
venient to work within a semiclassical framework where
current is carried in three parallel channels: supercurrent
carried by the Cooper pairs, a resistive path for dissipa-
tive current and a capacitive channel that accounts for
charge build up on the superconducting leads. If the
junction has a negligible geometric capacitance, one is
in an over-damped regime where the resistive shunt pro-
vides the only impedance. In this so-called resistively
shunted junction (RSJ) model [24], the total current
through the system can be written as J = JR + J('),
where JR = V/R is the current through the resistor R

and J(') is the current-phase relation (6). Finally, utiliz-
ing the universally valid superconducting phase evolution
relation d'/dt = 2eV/~ and imposing the current drive
J = Jdc +Jrf sin(!t), one obtains the first order di↵eren-
tial equation

~
2eR

@'

@t
+ J(') = Jdc + Jrf sin(!t). (33)

For a given twist, temperature, rf-drive parameters,
R and Jdc, the time evolution of the phase and, via a
time derivative, the voltage can be obtained by solving
the above equation numerically through a routine Runge-
Kutta algorithm. The representative time-averaged volt-
age behavior as a function of the direct current is de-
picted in Fig. 6a, where fractional steps corresponding to
the halved period in the T -broken phase are seen. An-
other way to visualize the Shapiro physics is to study the
dependence of the step widths as a function of rf current,
where the steps are revealed as maxima at quantized volt-
ages, see Fig. 6b-c. Since Prf = J

2
rfRrf , Jrf also serves as

a proxy for rf power. Steps appear progressively, starting
with low values of n, as the drive amplitude is increased
and at higher powers one observes an oscillatory pattern
[23, 31].

The constant voltage steps may be intuitively under-
stood as the virtual tunneling of Cooper pairs across the
barrier that is accompanied by an exchange of photons
with the radiation. Whenever the potential energy across
the junction is equal to the photon energy ~!, or a mul-
tiple thereof, a Cooper pair can absorb (emit) photons
from (to) the radiation field. The n

th Shapiro step cor-
responds to n photons being exchanged. The fractional
steps, on the other hand, coincide with two Cooper pairs
tunnelling across the junction.

With all else fixed, step amplitudes are proportional
to the critical currents Jc1,2 that are informed by the
microscopic model. To observe all steps and avoid inter-
ference, one has to ensure that they are su�ciently apart
on the Jdc axis; the separation is controlled by the ampli-
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FIG. 6. (a) Current-Voltage curves in the 45◦ twisted configuration in the presence of an external rf drive with amplitude Jrf = 0.7 at three
different frequencies. The voltage is scaled in units of h̄ω/2e to highlight the Shapiro steps and the lowest four fractional steps are indicated
with the horizontal dashed lines. [(b),(c)] Voltage as a function of drive current for two twists that are in the topological and trivial phases
respectively, with ω = 0.6. The color bar indicates step amplitudes. Since the numerical values of Jc1,2 at different twists vary widely, to aid
comparison, J (ϕ) is normalized such that the critical current in the absence of rf drive (Jrf = 0) is unity (or equivalently the zeroth-order step
has width 2). Clearly, fractional steps appear only for twist angles close to 45◦, as in panel (b). At high rf currents, one enters a regime where
the step amplitudes oscillate. The temperature is fixed at T = 0.5Tc and R = 0.7 in all simulations.

J = JR + J (ϕ), where JR = V/R is the current through the597

resistor R and J (ϕ) is the current-phase relation (6). Finally,598

utilizing the universally valid superconducting phase evolu-599

tion relation dϕ/dt = 2eV/h̄ and imposing the current drive600

J = Jdc + Jrf sin(ωt ), one obtains the first-order differential601

equation602

h̄
2eR

∂ϕ

∂t
+ J (ϕ) = Jdc + Jrf sin(ωt ). (33)

For a given twist, temperature, rf-drive parameters, R603

and Jdc, the time evolution of the phase and, via a time604

derivative, the voltage can be obtained by solving the above605

equation numerically through a routine Runge-Kutta algo-606

rithm. The representative time-averaged voltage behavior as607

a function of the direct current is depicted in Fig. 6(a), where608

fractional steps corresponding to the halved period in the T -609

broken phase are seen. Another way to visualize the Shapiro610

physics is to study the dependence of the step widths as a func-611

tion of rf current, where the steps are revealed as maxima at612

quantized voltages, see Figs. 6(b) and 6(c). Since Prf = J2
rf Rrf ,613

Jrf also serves as a proxy for rf power. Steps appear progres-614

sively, starting with low values of n, as the drive amplitude615

is increased and at higher powers one observes an oscillatory616

pattern [25,33].617

The constant voltage steps may be intuitively understood618

as the virtual tunneling of Cooper pairs across the barrier619

that is accompanied by an exchange of photons with the620

radiation. Whenever the potential energy across the junction621

is equal to the photon energy h̄ω, or a multiple thereof,622

a Cooper pair can absorb (emit) photons from (to) the623

radiation field. The nth Shapiro step corresponds to n pho-624

tons being exchanged. The fractional steps, on the other625

hand, coincide with two Cooper pairs tunneling across the626

junction.627

With all else fixed, step amplitudes are proportional to the628

critical currents Jc1,2 that are informed by the microscopic629

model. To observe all steps and avoid interference, one has630

to ensure that they are sufficiently apart on the Jdc axis; the631

separation is controlled by the amplitude and frequency of 632

the drive. While Jc2 is nonzero at any point in the phase di- 633

agram, we find empirically that having Jc2/Jc1 > 2 is required 634

to discern the fractional steps. This is a stronger condition 635

than Jc2/Jc1 > 1/2, which, according to our discussion in 636

Sec. III A, defines the T -broken phase. Therefore, appear- 637

ance of fractional Shapiro steps in experimental data can be 638

regarded as a strong sign of the T -broken phase in the system. 639

Temperature implicitly enters our model through micro- 640

scopic parameters Jc1,2. To fully account for the thermal 641

effects, one needs to add a noise term to the bias current [34]. 642

The main consequence of such a treatment is the “rounding” 643

of steps in the current-voltage characteristic: In the presence 644

of fluctuations, the switch from a constant voltage plateau 645

to a dissipative state would no longer be sharp, resulting in 646

smaller step amplitudes. Nevertheless, noise does not alter 647

the location of the steps and the qualitative features discussed 648

above continue to hold. 649

It is to be noted that fractional Shapiro steps can arise 650

in physical systems that are removed from the context of 651

topological superconductivity. For instance, two-dimensional 652

Josephson junction arrays may show half-integer steps due 653

to a skewed current-phase relation [35,36]. A sin(2ϕ) de- 654

pendence of the current also appears in magnetic Josephson 655

junctions [37]. In the present setting, given our theoretical 656

understanding, topological superconductivity should be the 657

primary candidate for the physics underlying unconventional 658

Shapiro physics. 659

VII. THICKER FLAKES 660

In this section we briefly consider twisted structures com- 661

posed of thicker flakes that might be easier to assemble and 662

probe in the laboratory [11,13]. Specifically, we study the 663

Josephson current between two flakes each composed of M 664

cuprate monolayers. The microscopic Hamiltonian describing 665

this situation can be constructed as a straightforward exten- 666

sion of Eq. (12). For example the M = 2 system is represented 667

004500-9

Experiment [Zhao et al., arXiv:2108.13455] observes 
“fractional Shapiro steps” near 45 degree twist



NEW: Field-Free Josephson	Diode	Effect in twisted BSCCO 
(from Alex Cui, Kim Group @ Harvard)

Nonreciprocal	Supercurrent

Josephson	Diode: 	I+
c < | Ibias | < I−

cFor	samples	with	twist	close	to	45o	they	observe	 | I+
c | ≠ | I−

c |

I+
c −I−

c

Because the current is odd under time reversal the non-reciprocal diode effect 
requires broken time reversal symmetry 
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(a)

(b)

FIG. 1. (a) Schematic of the Josephson effect measurement on a
twisted cuprate bilayer. Magnetic field B parallel to the interface and
electromagnetic radiation with frequency ω can be used to probe the
current-phase relationship. (b) Typical phase diagram of the system
calculated from the microscopic model discussed in Sec. II. It is
assumed that d + is order is nucleated near the magic angle θM

with the s component driven by a weak on-site attractive interaction.
Model parameters are εc = 60 meV, g = 10.5 meV, NF V = 0.12,
and NF Vs = 0.043.

corresponding GL free energy takes the form84

F[ψ1,ψ2] = F0[ψ1] + F0[ψ2] + A|ψ1|2|ψ2|2

+ B(ψ1ψ
∗
2 + c.c.) + C

(
ψ2

1 ψ∗2
2 + c.c.

)
, (1)

where ψa are complex scalars representing the dx2−y2 order85

parameters in layers a = 1, 2 and86

F0[ψ] = α|ψ |2 + 1
2β|ψ |4 (2)

is the free energy of a monolayer. Terms on the second line87

of Eq. (1) will be seen to underlie the interlayer Josephson88

effect. Physically, the B and C terms represent, respectively,89

coherent tunneling of single and double Cooper pairs between90

the layers.91

For two identical layers, the order parameters can only92

differ by a phase, which allows us to write93

ψ1 = ψ, ψ2 = ψeiϕ, (3)

where we take ψ to be real and positive. d-wave symmetry94

additionally implies that GL parameter B must change sign95

when the twist is increased by π/2. We henceforth assume96

the simplest angle dependence consistent with this condition,97

B = −B0 cos(2θ ), where B0 > 0 is taken to ensure that at98

zero-twist layers are in-phase. It is also generally true that 99

C > 0. With these ingredients we may write the correspond- 100

ing Josephson free energy 101

F (ϕ) = E0 − h̄
2e

[
Jc1 cos ϕ − 1

2
Jc2 cos(2ϕ)

]
, (4)

where Jc1 = (4eB0/h̄)ψ2 cos(2θ ), Jc2 = (2eC/h̄)ψ4 and E0 102

collects terms that are independent of ϕ. The competition 103

between the cos ϕ and cos 2ϕ terms in Eq. (4) underlies the 104

emergence of the spontaneously T -broken phase near the 45◦
105

twist. When θ is close to zero the conventional Josephson 106

tunneling term Jc1 dominates and the free energy minimum 107

occurs at ϕ = 0. Increasing the twist, however, decreases 108

Jc1 ∼ cos(2θ ). Eventually, for twist angle approaching 45◦, 109

the Jc2 term begins to dominate, and F (ϕ) develops two 110

distinct minima at ±ϕmin signaling the T -broken phase. 111

The other T -broken phase that occurs near the magic angle 112

θM depends on the structure of the low-energy quasiparticle 113

excitations and interaction physics. As such it cannot be un- 114

derstood based on the simple GL theory formulated above and 115

we will review its origin below. 116

The equilibrium current between the layers follows from 117

the Josephson relation 118

J (ϕ) = (2e/h̄)dF/dϕ, (5)

which yields a simple but all-important current-phase relation 119

J (ϕ) = Jc1 sin ϕ − Jc2 sin(2ϕ) (6)

that will form the basis for much of our analysis. It is to be 120

noted that coefficients Jc1,2 depend on both the twist angle 121

θ and temperature T . Within the basic GL theory this de- 122

pendence follows from expressions below Eq. (4) together 123

with ψ (T ) = ψ0
√

1 − T/Tc, which holds close to Tc. More 124

accurate dependencies valid for all temperatures can be ob- 125

tained from a microscopic model that will be discussed in 126

the next section. We note that there have been studies that 127

have looked at the general consequences of the presence of a 128

second harmonic in the current-phase relation (cf. Ref. [23]). 129

Since our parameters are informed by the microscopic model, 130

our results will be more directly relevant to twisted cuprates. 131

The physical observable that is most straightforward to 132

measure experimentally is the critical current 133

Jc = max
ϕ

[J (ϕ)]. (7)

We find that T and θ dependence of Jc show some interesting 134

features in the low-T regime but, perhaps surprisingly, do not 135

contain any clear signatures of the T -broken phases; Jc(T, θ ) 136

is a smooth function of its arguments across the transition 137

to the T -broken phase. The transition is signalled by the 138

vanishing phase stiffness, defined as 139

ρs = dJ (ϕ)
dϕ

∣∣∣∣
ϕ=0

. (8)

Mathematically, the condition ρs = 0 marks the point at which 140

the free energy minimum at ϕ = 0 becomes a local maximum. 141

Unfortunately, ρs is not easily measurable. For the conven- 142

tional sinusoidal current-phase relationship (i.e., when Jc2 = 143

0), it is easy to see that ρs and Jc coincide. We will highlight 144

departures from the Jc = ρs equality to quantify deviations 145
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FIG. 1. (a) Schematic of the Josephson effect measurement on a
twisted cuprate bilayer. Magnetic field B parallel to the interface and
electromagnetic radiation with frequency ω can be used to probe the
current-phase relationship. (b) Typical phase diagram of the system
calculated from the microscopic model discussed in Sec. II. It is
assumed that d + is order is nucleated near the magic angle θM

with the s component driven by a weak on-site attractive interaction.
Model parameters are εc = 60 meV, g = 10.5 meV, NF V = 0.12,
and NF Vs = 0.043.
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where ψa are complex scalars representing the dx2−y2 order85

parameters in layers a = 1, 2 and86

F0[ψ] = α|ψ |2 + 1
2β|ψ |4 (2)

is the free energy of a monolayer. Terms on the second line87

of Eq. (1) will be seen to underlie the interlayer Josephson88

effect. Physically, the B and C terms represent, respectively,89

coherent tunneling of single and double Cooper pairs between90

the layers.91

For two identical layers, the order parameters can only92

differ by a phase, which allows us to write93

ψ1 = ψ, ψ2 = ψeiϕ, (3)

where we take ψ to be real and positive. d-wave symmetry94

additionally implies that GL parameter B must change sign95

when the twist is increased by π/2. We henceforth assume96

the simplest angle dependence consistent with this condition,97

B = −B0 cos(2θ ), where B0 > 0 is taken to ensure that at98

zero-twist layers are in-phase. It is also generally true that 99

C > 0. With these ingredients we may write the correspond- 100
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excitations and interaction physics. As such it cannot be un- 114

derstood based on the simple GL theory formulated above and 115

we will review its origin below. 116

The equilibrium current between the layers follows from 117

the Josephson relation 118

J (ϕ) = (2e/h̄)dF/dϕ, (5)

which yields a simple but all-important current-phase relation 119

J (ϕ) = Jc1 sin ϕ − Jc2 sin(2ϕ) (6)

that will form the basis for much of our analysis. It is to be 120

noted that coefficients Jc1,2 depend on both the twist angle 121

θ and temperature T . Within the basic GL theory this de- 122

pendence follows from expressions below Eq. (4) together 123

with ψ (T ) = ψ0
√

1 − T/Tc, which holds close to Tc. More 124

accurate dependencies valid for all temperatures can be ob- 125

tained from a microscopic model that will be discussed in 126

the next section. We note that there have been studies that 127

have looked at the general consequences of the presence of a 128

second harmonic in the current-phase relation (cf. Ref. [23]). 129

Since our parameters are informed by the microscopic model, 130

our results will be more directly relevant to twisted cuprates. 131

The physical observable that is most straightforward to 132

measure experimentally is the critical current 133

Jc = max
ϕ

[J (ϕ)]. (7)

We find that T and θ dependence of Jc show some interesting 134

features in the low-T regime but, perhaps surprisingly, do not 135

contain any clear signatures of the T -broken phases; Jc(T, θ ) 136

is a smooth function of its arguments across the transition 137

to the T -broken phase. The transition is signalled by the 138

vanishing phase stiffness, defined as 139

ρs = dJ (ϕ)
dϕ

∣∣∣∣
ϕ=0

. (8)

Mathematically, the condition ρs = 0 marks the point at which 140

the free energy minimum at ϕ = 0 becomes a local maximum. 141

Unfortunately, ρs is not easily measurable. For the conven- 142

tional sinusoidal current-phase relationship (i.e., when Jc2 = 143

0), it is easy to see that ρs and Jc coincide. We will highlight 144

departures from the Jc = ρs equality to quantify deviations 145
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FIG. 1. (a) Schematic of the Josephson effect measurement on a
twisted cuprate bilayer. Magnetic field B parallel to the interface and
electromagnetic radiation with frequency ω can be used to probe the
current-phase relationship. (b) Typical phase diagram of the system
calculated from the microscopic model discussed in Sec. II. It is
assumed that d + is order is nucleated near the magic angle θM

with the s component driven by a weak on-site attractive interaction.
Model parameters are εc = 60 meV, g = 10.5 meV, NF V = 0.12,
and NF Vs = 0.043.
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derstood based on the simple GL theory formulated above and 115
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the Josephson relation 118
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1 − T/Tc, which holds close to Tc. More 124

accurate dependencies valid for all temperatures can be ob- 125

tained from a microscopic model that will be discussed in 126

the next section. We note that there have been studies that 127

have looked at the general consequences of the presence of a 128

second harmonic in the current-phase relation (cf. Ref. [23]). 129

Since our parameters are informed by the microscopic model, 130

our results will be more directly relevant to twisted cuprates. 131

The physical observable that is most straightforward to 132

measure experimentally is the critical current 133

Jc = max
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[J (ϕ)]. (7)

We find that T and θ dependence of Jc show some interesting 134

features in the low-T regime but, perhaps surprisingly, do not 135

contain any clear signatures of the T -broken phases; Jc(T, θ ) 136

is a smooth function of its arguments across the transition 137

to the T -broken phase. The transition is signalled by the 138

vanishing phase stiffness, defined as 139
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Mathematically, the condition ρs = 0 marks the point at which 140

the free energy minimum at ϕ = 0 becomes a local maximum. 141

Unfortunately, ρs is not easily measurable. For the conven- 142

tional sinusoidal current-phase relationship (i.e., when Jc2 = 143

0), it is easy to see that ρs and Jc coincide. We will highlight 144

departures from the Jc = ρs equality to quantify deviations 145

004500-2

φ

TUMMURU, PLUGGE, AND FRANZ PHYSICAL REVIEW B 00, 004500 (2022)

(a)

(b)

FIG. 1. (a) Schematic of the Josephson effect measurement on a
twisted cuprate bilayer. Magnetic field B parallel to the interface and
electromagnetic radiation with frequency ω can be used to probe the
current-phase relationship. (b) Typical phase diagram of the system
calculated from the microscopic model discussed in Sec. II. It is
assumed that d + is order is nucleated near the magic angle θM

with the s component driven by a weak on-site attractive interaction.
Model parameters are εc = 60 meV, g = 10.5 meV, NF V = 0.12,
and NF Vs = 0.043.
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d-wave symmetry dictates  B = − B0 cos(2θ)

Jc1 ∝ cos(2θ)
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• Zero Field Diode Effect only appears near 45°
• Possible broken ground state degeneracy

Data courtesy of Alex Cui, Philip Kim group, Harvard
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pondering twisted high-Tc 
cuprate superconductor”
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Summary and outlook

• Natural models of coupled layers of d-wave SC predict 
a T-broken phase when the twist angle is close to 


• The resulting phase is fully gapped and over much of 
the phase diagram also topologically non-trivial


• Topological phase will show an even number of 
protected chiral edge modes


• Gap opening can be detected through various 
spectroscopies (ARPES, STM)


• T-breaking can be probed directly (polar Kerr effect, SC 
diode effect, fractional Shapiro steps)   

45∘

Some interesting open questions:

1. What is the best way to observe the topological phase experimentally?

2. Are there any interesting uses for this novel topological superconducting phase once identified?

3. Are there other 2D systems (beyond graphene, chalcogenides, cuprates) that will produce interesting 

new behaviors under twist or similar geometries? 
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if we !x the quantization axis along x (φ = 0), then changing 
φ is equivalent to rotating the d-vector. A regular vortex cor-
responds to a state where the U(1) phase θ changes by 2π, 
with no change in the d-vector. A HQV corresponds to a state 
where θ changes by π, and φ also changes by π. It follows 
from equation (22) that the gap function is single-valued, with 
no net winding in the up-spin component and a 2π winding in 
the down-spin component. Since only the charge, not the spin, 
couples to magnetic #ux, the π winding of the U(1) phase 
corresponds to half the usual superconducting #ux quantum, 
or /Φ e40 , where Φ0 is the fundamental #ux quantum. It also 
follows from equation (22) that the d-vector rotates from  +z 
to  −z in going around the HQV.

In addition to the usual charge supercurrents associated 
with a regular vortex, which are screened, a HQV, since it is a 
vortex in only one spin component (or equivalently, since the 
spin state changes as one goes around the vortex) also has spin 
currents that are not screened and cost an energy which grows 
logarithmically with the system size. If one has a very small 
system size, this may not be a large penalty [42]. A HQV may 
also be costly in energy if the d-vector is strongly pinned in 
one-direction due to spin–orbit coupling.

Note that nowhere in the above discussion of HQVs was 
( )∆ k  speci!ed to be chiral. Any ESP state can support HQVs. 

For a simple chiral (or helical) p-wave state, there is a sin-
gle robust Majorana zero mode in the HQV core [40]. This 
follows from the fact that only one spin state is involved in 
the vortex. HQVs will be discussed further in the section on 
Sr2RuO4.

4. Anomalous Hall and polar Kerr effects

Broken time reversal symmetry (BTRS) is a de!ning prop-
erty of chiral superconductivity and a number of probes are 
used to detect BTRS in superconductors including muon spin 
resonance, Josephson tunneling, scanning SQUID or Hall bar 
probes, and polar Kerr measurements. These will be discussed 
in the following sections  on Sr2RuO4 and UPt3. However, 
the polar Kerr effect, which is directly related to the anom-
alous Hall effect, deserves further discussion here, as it has 
caused some confusion in the literature, both in connection 
to Sr2RuO4 as well as to the high Tc cuprates, and Kerr effect 
experiments on these materials have driven some recent theor-
etical advances in our understanding. See, for example, [43] 
and [44], which address earlier misconceptions about the Kerr 
effect.

In a polar Kerr experiment, linearly polarized light of fre-
quency, ω, normally incident on the sample, is re#ected as 
elliptically polarized light with the polarization axis rotated by 
the Kerr angle, θK, which is related to the Hall conductivity:

θ ω π
ω

σ ω=
−

⎛
⎝⎜

⎞
⎠⎟n n

4
Im

1
K

H
2( ) ( )

( ) (23)

where n is the complex index of refraction and 
( ) [ ( ) ( )]/σ ω σ ω σ ω= − 2xy yxH  is the Hall conductivity. It fol-

lows from equation (23), for general ω, that one has a non-zero 
Kerr angle if and only if the Hall conductivity is non-zero. 

Thus, a polar Kerr effect implies an anomalous Hall effect 
(a Hall effect in the absence of an applied magnetic !eld). 
While the index of refraction can introduce strong frequency 
dependence, particularly for frequencies close to the plasma 
frequency, it suf!ces to study ( )σ ωH  to understand how a chiral 
superconductor gives rise to a non-zero Kerr effect.

BTRS is a necessary but not suf!cient condition to have 
a Kerr effect or an anomalous Hall effect in a chiral super-
conductor. Broken translational symmetry is also necessary 
because the external !eld only couples to the center-of-mass 
momentum which is decoupled from the relative degrees of 
freedom (i.e. interaction effects) in a Galilean invariant sys-
tem [15]. The BTRS of a translationally invariant chiral super-
conductor could, in principle, be probed at !nite wave vector. 
For a clean, isotropic two-dimensional chiral p-wave super-
conductor at zero temperature, one can show the q-dependent 
anomalous Hall conductivity is [43, 45, 46]

( )σ ω
ω

=
−!

q
e C v q

v q
,

2
H

2
F

2

2
F

2 (24)

where vF is the Fermi velocity, C is the Chern number and 
ω ∆! 0. At high frequencies, this expression is suppressed 
by a factor of ( / )ω∆0

2 [43]. Note that ( )σ ω0,H , vanishes, as 
expected for a translationally invariant chiral superconductor. 
While it would be interesting to probe the q-dependent Hall 
conductivity in the limit where v qF  is comparable to or larger 
than ω, it is not clear how one could do this. The !nite beam 
size of the incident photons in a polar Kerr experiment does 
bring in a !nite in-plane q, but this effect is too small to be 
detected [43].

Impurities in a chiral superconductor give rise to a Kerr 
effect, or σH, although the lowest order Born contribution, of 
order n UI

2, where nI is the density of impurities and U their 
potential, vanishes. The dominant impurity contribution for 
chiral p-wave is from a type of ‘skew scattering’ and is of 
order n UI

3 [47–49]. This contribution vanishes for higher 
angular momentum pairing, such as chiral d- or f-wave, in 
the continuum limit [47]. Presumably, order ( )n UI

2 2 or higher 
terms would contribute for higher angular momentum pairing.

To date, the anomalous Hall conductivity of possible chiral 
superconductors has only been measured at high frequencies, 
a substantial fraction of an eV, through measurements of the 
Kerr effect. At high frequency the single particle contribution 
to the anomalous Hall conductivity dominates and σxy can be 
written as: [51]

∑σ ν
ν

ω ω ν= +
ω

e T
v G v Gk k

i
Tr , ,xy n

n
x n y n n

k

2

,
0 0

n

( ) [ ( ) ( )] (25)

where G0 is the Green’s function in the Nambu representation, 
ν ω,n n are Bose and Fermi Matsubara frequencies and vi is the 
i-component of the velocity matrix. For a single band chiral 
superconductor ( )/= ∂ ∂εv k ki i, multiplying the ×2 2 identity 
matrix. In that case, vi commutes with G0 and it follows that 
σ σ=xy yx. In other words, at the single particle level, σH van-
ishes for any one-band chiral superconductor.

There are higher order contributions (i.e. vertex correc-
tions) to the anomalous Hall conductivity of a clean one-band 
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if we !x the quantization axis along x (φ = 0), then changing 
φ is equivalent to rotating the d-vector. A regular vortex cor-
responds to a state where the U(1) phase θ changes by 2π, 
with no change in the d-vector. A HQV corresponds to a state 
where θ changes by π, and φ also changes by π. It follows 
from equation (22) that the gap function is single-valued, with 
no net winding in the up-spin component and a 2π winding in 
the down-spin component. Since only the charge, not the spin, 
couples to magnetic #ux, the π winding of the U(1) phase 
corresponds to half the usual superconducting #ux quantum, 
or /Φ e40 , where Φ0 is the fundamental #ux quantum. It also 
follows from equation (22) that the d-vector rotates from  +z 
to  −z in going around the HQV.

In addition to the usual charge supercurrents associated 
with a regular vortex, which are screened, a HQV, since it is a 
vortex in only one spin component (or equivalently, since the 
spin state changes as one goes around the vortex) also has spin 
currents that are not screened and cost an energy which grows 
logarithmically with the system size. If one has a very small 
system size, this may not be a large penalty [42]. A HQV may 
also be costly in energy if the d-vector is strongly pinned in 
one-direction due to spin–orbit coupling.

Note that nowhere in the above discussion of HQVs was 
( )∆ k  speci!ed to be chiral. Any ESP state can support HQVs. 

For a simple chiral (or helical) p-wave state, there is a sin-
gle robust Majorana zero mode in the HQV core [40]. This 
follows from the fact that only one spin state is involved in 
the vortex. HQVs will be discussed further in the section on 
Sr2RuO4.

4. Anomalous Hall and polar Kerr effects

Broken time reversal symmetry (BTRS) is a de!ning prop-
erty of chiral superconductivity and a number of probes are 
used to detect BTRS in superconductors including muon spin 
resonance, Josephson tunneling, scanning SQUID or Hall bar 
probes, and polar Kerr measurements. These will be discussed 
in the following sections  on Sr2RuO4 and UPt3. However, 
the polar Kerr effect, which is directly related to the anom-
alous Hall effect, deserves further discussion here, as it has 
caused some confusion in the literature, both in connection 
to Sr2RuO4 as well as to the high Tc cuprates, and Kerr effect 
experiments on these materials have driven some recent theor-
etical advances in our understanding. See, for example, [43] 
and [44], which address earlier misconceptions about the Kerr 
effect.

In a polar Kerr experiment, linearly polarized light of fre-
quency, ω, normally incident on the sample, is re#ected as 
elliptically polarized light with the polarization axis rotated by 
the Kerr angle, θK, which is related to the Hall conductivity:
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where n is the complex index of refraction and 
( ) [ ( ) ( )]/σ ω σ ω σ ω= − 2xy yxH  is the Hall conductivity. It fol-

lows from equation (23), for general ω, that one has a non-zero 
Kerr angle if and only if the Hall conductivity is non-zero. 

Thus, a polar Kerr effect implies an anomalous Hall effect 
(a Hall effect in the absence of an applied magnetic !eld). 
While the index of refraction can introduce strong frequency 
dependence, particularly for frequencies close to the plasma 
frequency, it suf!ces to study ( )σ ωH  to understand how a chiral 
superconductor gives rise to a non-zero Kerr effect.

BTRS is a necessary but not suf!cient condition to have 
a Kerr effect or an anomalous Hall effect in a chiral super-
conductor. Broken translational symmetry is also necessary 
because the external !eld only couples to the center-of-mass 
momentum which is decoupled from the relative degrees of 
freedom (i.e. interaction effects) in a Galilean invariant sys-
tem [15]. The BTRS of a translationally invariant chiral super-
conductor could, in principle, be probed at !nite wave vector. 
For a clean, isotropic two-dimensional chiral p-wave super-
conductor at zero temperature, one can show the q-dependent 
anomalous Hall conductivity is [43, 45, 46]
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where vF is the Fermi velocity, C is the Chern number and 
ω ∆! 0. At high frequencies, this expression is suppressed 
by a factor of ( / )ω∆0

2 [43]. Note that ( )σ ω0,H , vanishes, as 
expected for a translationally invariant chiral superconductor. 
While it would be interesting to probe the q-dependent Hall 
conductivity in the limit where v qF  is comparable to or larger 
than ω, it is not clear how one could do this. The !nite beam 
size of the incident photons in a polar Kerr experiment does 
bring in a !nite in-plane q, but this effect is too small to be 
detected [43].

Impurities in a chiral superconductor give rise to a Kerr 
effect, or σH, although the lowest order Born contribution, of 
order n UI

2, where nI is the density of impurities and U their 
potential, vanishes. The dominant impurity contribution for 
chiral p-wave is from a type of ‘skew scattering’ and is of 
order n UI

3 [47–49]. This contribution vanishes for higher 
angular momentum pairing, such as chiral d- or f-wave, in 
the continuum limit [47]. Presumably, order ( )n UI

2 2 or higher 
terms would contribute for higher angular momentum pairing.

To date, the anomalous Hall conductivity of possible chiral 
superconductors has only been measured at high frequencies, 
a substantial fraction of an eV, through measurements of the 
Kerr effect. At high frequency the single particle contribution 
to the anomalous Hall conductivity dominates and σxy can be 
written as: [51]
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where G0 is the Green’s function in the Nambu representation, 
ν ω,n n are Bose and Fermi Matsubara frequencies and vi is the 
i-component of the velocity matrix. For a single band chiral 
superconductor ( )/= ∂ ∂εv k ki i, multiplying the ×2 2 identity 
matrix. In that case, vi commutes with G0 and it follows that 
σ σ=xy yx. In other words, at the single particle level, σH van-
ishes for any one-band chiral superconductor.

There are higher order contributions (i.e. vertex correc-
tions) to the anomalous Hall conductivity of a clean one-band 
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probes, and polar Kerr measurements. These will be discussed 
in the following sections  on Sr2RuO4 and UPt3. However, 
the polar Kerr effect, which is directly related to the anom-
alous Hall effect, deserves further discussion here, as it has 
caused some confusion in the literature, both in connection 
to Sr2RuO4 as well as to the high Tc cuprates, and Kerr effect 
experiments on these materials have driven some recent theor-
etical advances in our understanding. See, for example, [43] 
and [44], which address earlier misconceptions about the Kerr 
effect.
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elliptically polarized light with the polarization axis rotated by 
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lows from equation (23), for general ω, that one has a non-zero 
Kerr angle if and only if the Hall conductivity is non-zero. 

Thus, a polar Kerr effect implies an anomalous Hall effect 
(a Hall effect in the absence of an applied magnetic !eld). 
While the index of refraction can introduce strong frequency 
dependence, particularly for frequencies close to the plasma 
frequency, it suf!ces to study ( )σ ωH  to understand how a chiral 
superconductor gives rise to a non-zero Kerr effect.
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momentum which is decoupled from the relative degrees of 
freedom (i.e. interaction effects) in a Galilean invariant sys-
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where vF is the Fermi velocity, C is the Chern number and 
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by a factor of ( / )ω∆0

2 [43]. Note that ( )σ ω0,H , vanishes, as 
expected for a translationally invariant chiral superconductor. 
While it would be interesting to probe the q-dependent Hall 
conductivity in the limit where v qF  is comparable to or larger 
than ω, it is not clear how one could do this. The !nite beam 
size of the incident photons in a polar Kerr experiment does 
bring in a !nite in-plane q, but this effect is too small to be 
detected [43].

Impurities in a chiral superconductor give rise to a Kerr 
effect, or σH, although the lowest order Born contribution, of 
order n UI

2, where nI is the density of impurities and U their 
potential, vanishes. The dominant impurity contribution for 
chiral p-wave is from a type of ‘skew scattering’ and is of 
order n UI

3 [47–49]. This contribution vanishes for higher 
angular momentum pairing, such as chiral d- or f-wave, in 
the continuum limit [47]. Presumably, order ( )n UI

2 2 or higher 
terms would contribute for higher angular momentum pairing.

To date, the anomalous Hall conductivity of possible chiral 
superconductors has only been measured at high frequencies, 
a substantial fraction of an eV, through measurements of the 
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where G0 is the Green’s function in the Nambu representation, 
ν ω,n n are Bose and Fermi Matsubara frequencies and vi is the 
i-component of the velocity matrix. For a single band chiral 
superconductor ( )/= ∂ ∂εv k ki i, multiplying the ×2 2 identity 
matrix. In that case, vi commutes with G0 and it follows that 
σ σ=xy yx. In other words, at the single particle level, σH van-
ishes for any one-band chiral superconductor.

There are higher order contributions (i.e. vertex correc-
tions) to the anomalous Hall conductivity of a clean one-band 
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This can be calculated from the standard Kubo formula

α
θ

F¼"16

!2

Z !

"!
dxdy

sin2xsin2yðcosysin2xþcosxsin2yÞ
~E1

~E2ð ~E2þ ~E1Þ½ð ~!þi"Þ2"ð ~E1þ ~E2Þ2'
(11)

is dimensionless, with xc ( kxa, y ( kya, and all quanti-
ties with a tilde are scaled by t. To numerically calculate
Im"H, we use " ¼ 10"6.

In Fig. 2, we plot the real and imaginary parts of "H as a
function of frequency for t ¼ # ¼ 0:4 eV and t0 ¼ 0:1t.
Following previous studies [9,10], we take !0 to be its
BCS value 1:76Tc, which is equal to 0.23 meV for the
ultraclean samples used in Ref. [6] with Tc ¼ 1:5 K. At
high frequencies @! * 0:4 eV, the (negative) real part
dominates the conductivity. It is well-approximated by
the exact asymptotic limit [25], "Hð!!1Þ¼ði=!2Þ)
½h½Ĵx;Ĵy'iþOð!"2Þ', with h½Ĵx; Ĵy'i¼"2ie2T

P
kIm)

ðP!n
½G0ðk;!nÞ'13Þð$v21)v12Þz. Using the above values,

this gives "Hð!Þ ’ "2:6) 10"8ðe2=@Þ=ð@!=eVÞ2, shown
by the dotted line in Fig. 2. Even though the minimum of
the quasiparticle energies lies close to the gap !0, the
energy of the quasiparticle pair that determines the imagi-
nary Hall response, E"ðkÞ þ Eþð"kÞ, [(see (8)] has a
minimum around 2t0 * 2!0, accounting for the absence
of any spectral weight at T ¼ 0 in Im"H below a value of
this order.

The specific frequency at which the imaginary Hall
response becomes nonzero depends on the details of the
model, but generically, t0 (and/or SOC) separates both the
bands and the quasiparticle spectra in energy at fixed wave
vector so that the minimum frequency will be of this order
and not of order 2!0. If the Fermi surfaces are closer to
each other in momentum space (as they may be in a three
band model) the structure seen in the imaginary Hall
response will shift to somewhat lower frequencies. We
also note that for T > 0, þ $ " quasiparticle transitions
fill in some of the low frequency spectral weight. The rapid
rise in Im"H shown here results from a van Hove singu-
larity for E" þ Eþ.

In Fig. 3, we plot "H at @! ¼ 0:8 eV, the frequency
used in the experiment of Xia et al. [6], as a function of
#=t. Figure 3 clearly exhibits the need for particle-hole
asymmetry (# ! 0) discussed earlier. (For j#j * 2t, our
model system is an insulator.)
The Kerr angle %Kð!Þ ¼ ð4!=!dÞIm½"H=nðn2 " 1Þ'

depends not only on the Hall conductivity, but also material
parameters such as the distance d between Ru-O layers and
the complex index of refraction nð!Þ [10]. Thus, in order to
calculate %K one needs knowledge of optical properties of
Sr2RuO4 such as the diagonal component "ð!Þ of the
conductivity tensor. Using an experimentally-motivated
generalized Drude form for "ð!Þ (the same parameters
and model as used in Ref. [10]), we find (see Supplemental
Materials [26]) that the intrinsic contribution to the Hall
conductivity calculated above gives rise to a Kerr angle of
+50 nrads at @! ¼ 0:8 eV.
Most studies of multiband superconductivity in Sr2RuO4

assume pairing within the same band, predominantly on
the & band with passive pairing on the ', ( bands [12–15].
In these models, any interband pairing would likely be
substantially suppressed compared to the primary order
parameter (on &), given the relative sizes of inter- and
intraband coupling. Added to this the fact that the & band
only comprises a small admixture of dxz and dyz orbitals
[22], we conclude that the Hall conductivity in these
models is likely to be more than an order of magnitude
smaller than the estimate we give above. In contrast, the
models of Refs. [17–19], in which the inter- and intraband
order parameters live on the dxz, dyz orbitals and have the

same magnitude, likely provide the maximum intrinsic
Hall conductivity amongst current models of Sr2RuO4.
Conclusions.—In this work, we have shown how an

intrinsic, anomalous Hall effect can arise in chiral multi-
band superconductors provided there is interband pairing
and broken particle-hole symmetry—a state of affairs that
one would generally expect to be true. This effect, which
has also been studied independently and concurrently in
Ref. [27], should be generic to all clean multiband chiral

2 1 0 1 2

4. 10 8

2. 10 8

0

2. 10 8

4. 10 8

t

H
0.

8
eV

e2

FIG. 3. Real (solid line) and imaginary (dashed line) parts of
the T ¼ 0 Hall conductivity in units of e2=@ as a function of #=t
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0.0 0.1 0.2 0.3 0.4 0.5

1. 10 6

0

1. 10 6

2. 10 6

3. 10 6

eV

H
e2

FIG. 2 (color online). Real (blue solid line) and imaginary (red
dashed line) parts of the T ¼ 0 Hall conductivity in units of e2=@
as a function of @! for !0 ¼ 0:23 meV and t ¼ # ¼ 10t0 ¼
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order parameters of the twisted layers �H vanishes.

Next, we compare the optical Hall conductivity �H for
the 10-band and the 2-band models (FIG. 4) in the low
filling regime where we expect some degree of agreement
in the optical conductivity. We use the same tight bind-
ing parameters for each monolayer in both models. The
main di↵erence between the two Hamiltonians is the form
of interlayer couplings. In the 10-band model we assume
an exponentially decaying all to all interlayer couplings
(Eq. (2)), while in the 2-band model we use a near-
est neighbor hopping form (Eq. (5)) where two square
monolayers are o↵set. We fix a value for the interlayer
coupling of the 10-band model and tune the interlayer
coupling of the 2-band model such that imaginary on-
sets of the �H for two models match. This happens for

g
(2band)
0 ⇡ 2g(10band)0 for g

(10band)
0 = 16meV. The low

energy behaviour of the curves are qualitatively similar.
Zero frequency limits of the curves di↵er by about a fac-
tor of 3. We attribute this discrepancy to the di↵erence
in the form of interlayer couplings between two models
as well as mismatch between the two models away from
the BZ center.

FIG. 2. a) Zero frequency limit of the real part of the optical
Hall conductivity �H(!) for the 10-band lattice model at com-
mensurate twist angle ✓ = 2arctan (1/2) The tight binding
model parameters are chosen to be t = 0.153eV, t0 = �0.45t,
µ = �1.35t (optimal doping). Order parameter is determined
self consistently while tuning interlayer coupling strength (Eq.
2) g0. The data shown in the main panel corresponds to the
highlighted slice in the phase diagram, shown as the inset
(b) which shows the phase diagram of this configuration as a
function of g0 and µ/t where µ is the chemical potential. The
color corresponds to the Chern number C while the radius of
the dots show the minimal gap in arbitrary units.

FIG. 3. Optical Hall conductivity �H(!) for the 10-band lat-
tice model for a various values of interlayer coupling strength
g0. Solid and dashed curves show the real and the imagi-
nary parts, respectively. Zero frequency limits of these curves
are shown in Fig 2, among with curves for a range of g0 val-
ues. The tight binding model parameters are chosen to be
t = 0.153eV, t0 = �0.45t, µ = �1.3t, Order parameter is cal-
culated self consistently, breaking the time reversal symme-
try. For this set of parameters and g0 < 20meV we find that
the Chern number C = 4 and the system is in d+id state.
As a representative of the d+is state, we calculate �H for
g0 = 32meV and we find that signal is negligible (⇡ 1e�7e2/~)
compared to d+id case. Grey dotted curve shows !�2 scaling
as expected in high frequency limit.

Lessons learned from the 2-band model

We found that without the anisotropic part (t0 term) of
the dispersion in (3) optical Hall conductivity vanishes.

SUMMARY AND CONCLUSIONS

We have computed the
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dx2−y2 + idxy

Twisted Bi-2212  (  )θ ≃ 36.80

• The Hall conductivity is nonzero and large in the d+id’ state of twisted Bi-2212

• The signal is about 3 orders of magnitude stronger than that predicted for 

Sr2Ru04; this is chiefly due to much larger SC gap in the cuprate.
PRL 127, 157001 (2021)
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FIG. 10. Temperature dependence of the phase diagram is
shown for ✓2,5 ' 43.6� at T = 0 and T = Tc/2 in panels (a)
and (b) respectively. Panel (c) shows the minimum gap as a
function of temperature for g0 = 32meV and µ = �1.35t (the
parameters are indicated in panels (a) and (b) by a dashed
circle)

where F0 collects all the terms that are independent of
the relative phases between the layers and we only in-
clude coupling between adjacent layers. The most general
ansatz for order parameters which respect the requisite
symmetries would be

 1 =  e
�i'/2

,  2 =  e
i'/2

, (26)

�1 = �e
�i'0/2

, �2 = �e
i'0/2

,

with the amplitudes  and � real and positive. The free
energy (25) then becomes

F = F0 + 2B0 
2 [� cos(2✓) cos'+ K cos(2')]

+ 2B
0
0 � [� cos(�') + K

0 cos (2�')] , (27)

where �' = (' � '
0)/2 and K

0 = C
0
 �/B

0
0. Observe

that terms describing interlayer and intralayer phase dif-
ferences, ' and �' respectively, can be minimized inde-
pendently. The intralayer free energy, represented by the
second line of Eq. (27), will be dominated by the sin-
gle pair tunneling term � cos(�') on the account of the
two CuO2 planes being in a natural untwisted configu-
ration. This implies �' = 0: the two order parameters
within each monolayer will be in phase, as expected. The
remaining interlayer component of the free energy then
coincides with Eq. (2) and its analysis proceeds exactly
as before. This confirms that at the level of the GL the-
ory, the presence of the extra layers has no e↵ect on our
prior conclusions.

4

FIG. 3. Lattice model results. Panels (a,b) show the temperature dependence of the minimum gap �min, the maximum
gap �max and phase ', based on a fully self-consistent lattice calculation for coupled layers with commensurate twist angles
✓1,2 ' 53.13o, and ✓2,5 ' 43.60o corresponding to a unit cell with 10 and 58 sites, respectively. Panels (c-e) show zero
temperature phase diagrams of the system for three twist angles as a function of chemical potential µ and interlayer coupling
g0. The range of chemical potentials µ 2 (�1.6t, �1.0t) correspond to range of fillings n 2 (0.033, 0.04) near optimal doping.
Each data point in the phase diagram corresponds to an independent self-consistent solution and the radius of markers is
proportional to the size of the minimum gap �min. The color indicates the Chern number as shown in the legend. Panel (f)
displays tunneling conductance �(E)/�N calculated for ✓ ' 53.13o, µ/t = �1.3, g0 = 20meV and temperatures ranging from 0
to 1.2Tc as indicated by color scale. Curves for di↵erent temperatures have been o↵set for clarity. Panels (g) and (h) illustrate
the edge modes for C = 4 and C = 2 topological phases, respectively, in ✓2,5 configuration for parameters µ = �1.3t and
g0 = 20, 52 meV. The energy spectrum is shown for a bilayer system in the infinite strip geometry with width of 90 unit cells.
The color scale represents the normalized position expectation value of the eigenstate along the direction of finite length.

tude, respectively, and

�ka =
X

p

0
V

(a)
kp hc�p#acp"ai (8)

defines the superconducting order parameter in layer a.
The prime on the summation indicates a restriction to
momentum states with energy within ✏c of the Fermi
level. The Hamiltonian (7) should be regarded as a mean-
field approximation of the BCS pairing Hamiltonian with

the interaction term
P

kp V
(a)
kp c

†
k"ac

†
�k#ac�p#acp"a where

V
(a)
kp denotes the interaction matrix element in layer a.

We shall use a simple separable form

V
(a)
kp = �2V cos (2↵k) cos (2↵p), (9)

where ↵k denotes the polar angle of vector k, which is
known to yield a robust solution with dx2�y2 symmetry
for a single CuO2 layer, namely �k = �d cos (2↵k).

In order to incorporate the twist we take the in-
teraction in layer 1 as in Eq. (9) but we rotate the

interaction in layer 2 by angle ✓ such that V
(2)
kp =

�2V cos (2↵k � 2✓) cos (2↵p � 2✓). For the sake of sim-
plicity we consider a circular Fermi surface generated by
⇠ka = ~2

k
2
/2m � µ which remains invariant under ro-

tation, see Fig. 2(e). The problem posed by Hamilto-
nian (7) is solved by defining a four-component Nambu
spinor  k = (ck"1, c

†
�k#1, ck"2, c

†
�k#2)

T in terms of which

H =
P
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FIG. 11. Physics of systems with multiple CuO2 planes
per monolayer. a) The structure and notation used for the
case with N = 2 CuO2 planes. Panels b) and c) show phase
diagrams of the lattice BdG model for bilayers with N = 2,
relevant to the Bi2212 crystal structure with the intra-bilayer
coupling set to tz = 40meV.

Microscopic models can likewise be extended to the
N > 1 case by adding appropriate CuO2 planes to each
monolayer. We illustrate this by considering a straight-
forward generalization of our lattice Hamiltonian Eq.
(12) to N = 2. This is achieved by adding another square
lattice of sites, which is described by the same Hamilto-
nian, to each monolayer and coupling the partner lattice
sites by an intralayer tunneling term with amplitude tz.
Results of the N = 2 self-consistent calculation are shown
in Fig. 11(b,c) where we chose tz = 40meV as appropriate
for Bi2212 [S53]. We observe physics very similar to the
N = 1 case, except that topological phases now exhibit
Chern numbers 8 and 6, consistent with the notion that
in the e↵ective d+ id

0 state each CuO2 plane contributes
C = 2 to the aggregate Chern number of the system.

Josephson tunneling

In the past, several works have studied the problem
of Cooper pair tunneling across c-axis twist junctions
in order to understand the order parameter symmetry
of cuprates [S24, S54]. Assuming a purely dx2�y2 order
parameter, it can be shown that the critical Josephson
current must vanish when the twist angle is 45�. Re-
cent experiments in twisted ultra-thin layers of Bi2212,
however, observed that the critical current is essentially
independent of the twist [S47]. Here, we show the current
is indeed non-vanishing when T is broken.

For the Josephson junction formed by the bilayer, the
phase dependent supercurrent for a given c axis twist can
be determined within the framework of the phenomeno-
logical GL theory via the relation

I(', ✓) =
2e

~
@F(', ✓)

@'
, (28)

where the free energy has the form given in Eq. (4). A
typical current-phase relation thus obtained is plotted in
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FIG. 10. Temperature dependence of the phase diagram is
shown for ✓2,5 ' 43.6� at T = 0 and T = Tc/2 in panels (a)
and (b) respectively. Panel (c) shows the minimum gap as a
function of temperature for g0 = 32meV and µ = �1.35t (the
parameters are indicated in panels (a) and (b) by a dashed
circle)

where F0 collects all the terms that are independent of
the relative phases between the layers and we only in-
clude coupling between adjacent layers. The most general
ansatz for order parameters which respect the requisite
symmetries would be

 1 =  e
�i'/2

,  2 =  e
i'/2

, (26)

�1 = �e
�i'0/2

, �2 = �e
i'0/2

,

with the amplitudes  and � real and positive. The free
energy (25) then becomes

F = F0 + 2B0 
2 [� cos(2✓) cos'+ K cos(2')]

+ 2B
0
0 � [� cos(�') + K

0 cos (2�')] , (27)

where �' = (' � '
0)/2 and K

0 = C
0
 �/B

0
0. Observe

that terms describing interlayer and intralayer phase dif-
ferences, ' and �' respectively, can be minimized inde-
pendently. The intralayer free energy, represented by the
second line of Eq. (27), will be dominated by the sin-
gle pair tunneling term � cos(�') on the account of the
two CuO2 planes being in a natural untwisted configu-
ration. This implies �' = 0: the two order parameters
within each monolayer will be in phase, as expected. The
remaining interlayer component of the free energy then
coincides with Eq. (2) and its analysis proceeds exactly
as before. This confirms that at the level of the GL the-
ory, the presence of the extra layers has no e↵ect on our
prior conclusions.

4

FIG. 3. Lattice model results. Panels (a,b) show the temperature dependence of the minimum gap �min, the maximum
gap �max and phase ', based on a fully self-consistent lattice calculation for coupled layers with commensurate twist angles
✓1,2 ' 53.13o, and ✓2,5 ' 43.60o corresponding to a unit cell with 10 and 58 sites, respectively. Panels (c-e) show zero
temperature phase diagrams of the system for three twist angles as a function of chemical potential µ and interlayer coupling
g0. The range of chemical potentials µ 2 (�1.6t, �1.0t) correspond to range of fillings n 2 (0.033, 0.04) near optimal doping.
Each data point in the phase diagram corresponds to an independent self-consistent solution and the radius of markers is
proportional to the size of the minimum gap �min. The color indicates the Chern number as shown in the legend. Panel (f)
displays tunneling conductance �(E)/�N calculated for ✓ ' 53.13o, µ/t = �1.3, g0 = 20meV and temperatures ranging from 0
to 1.2Tc as indicated by color scale. Curves for di↵erent temperatures have been o↵set for clarity. Panels (g) and (h) illustrate
the edge modes for C = 4 and C = 2 topological phases, respectively, in ✓2,5 configuration for parameters µ = �1.3t and
g0 = 20, 52 meV. The energy spectrum is shown for a bilayer system in the infinite strip geometry with width of 90 unit cells.
The color scale represents the normalized position expectation value of the eigenstate along the direction of finite length.

tude, respectively, and
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X

p

0
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(a)
kp hc�p#acp"ai (8)

defines the superconducting order parameter in layer a.
The prime on the summation indicates a restriction to
momentum states with energy within ✏c of the Fermi
level. The Hamiltonian (7) should be regarded as a mean-
field approximation of the BCS pairing Hamiltonian with

the interaction term
P

kp V
(a)
kp c

†
k"ac

†
�k#ac�p#acp"a where

V
(a)
kp denotes the interaction matrix element in layer a.

We shall use a simple separable form

V
(a)
kp = �2V cos (2↵k) cos (2↵p), (9)

where ↵k denotes the polar angle of vector k, which is
known to yield a robust solution with dx2�y2 symmetry
for a single CuO2 layer, namely �k = �d cos (2↵k).
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teraction in layer 1 as in Eq. (9) but we rotate the
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plicity we consider a circular Fermi surface generated by
⇠ka = ~2

k
2
/2m � µ which remains invariant under ro-
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FIG. 11. Physics of systems with multiple CuO2 planes
per monolayer. a) The structure and notation used for the
case with N = 2 CuO2 planes. Panels b) and c) show phase
diagrams of the lattice BdG model for bilayers with N = 2,
relevant to the Bi2212 crystal structure with the intra-bilayer
coupling set to tz = 40meV.

Microscopic models can likewise be extended to the
N > 1 case by adding appropriate CuO2 planes to each
monolayer. We illustrate this by considering a straight-
forward generalization of our lattice Hamiltonian Eq.
(12) to N = 2. This is achieved by adding another square
lattice of sites, which is described by the same Hamilto-
nian, to each monolayer and coupling the partner lattice
sites by an intralayer tunneling term with amplitude tz.
Results of the N = 2 self-consistent calculation are shown
in Fig. 11(b,c) where we chose tz = 40meV as appropriate
for Bi2212 [S53]. We observe physics very similar to the
N = 1 case, except that topological phases now exhibit
Chern numbers 8 and 6, consistent with the notion that
in the e↵ective d+ id

0 state each CuO2 plane contributes
C = 2 to the aggregate Chern number of the system.

Josephson tunneling

In the past, several works have studied the problem
of Cooper pair tunneling across c-axis twist junctions
in order to understand the order parameter symmetry
of cuprates [S24, S54]. Assuming a purely dx2�y2 order
parameter, it can be shown that the critical Josephson
current must vanish when the twist angle is 45�. Re-
cent experiments in twisted ultra-thin layers of Bi2212,
however, observed that the critical current is essentially
independent of the twist [S47]. Here, we show the current
is indeed non-vanishing when T is broken.

For the Josephson junction formed by the bilayer, the
phase dependent supercurrent for a given c axis twist can
be determined within the framework of the phenomeno-
logical GL theory via the relation

I(', ✓) =
2e

~
@F(', ✓)
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, (28)

where the free energy has the form given in Eq. (4). A
typical current-phase relation thus obtained is plotted in
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