Topological Superconductivity in Twisted Unconventional Superconductors

M. Franz University of British Columbia

People involved

Theory

- Marcel Franz (UBC & QMI)
- Oguz Can (Franz group)
- Tarun Tummuru (Affleck & Franz group)
- Ryan Day (Damascelli group)
- Ilya Elfimov (QMI)
- Andrea Damascelli (QMI)
- Rafael Haenel (Franz group)
- Etiene Lantagne-Hurtubise (Caltech)
- Stephan Plugge (Leiden)
- Xiao-Xiao Zhang (MPI/QMI)
- Catherine Kallin (McMaster)
- Stephan Plugge (QMI/Leiden)
- Jed Pixley, Pavel Volkov (Rutgers)

Experiment

- Ziliang Ye
- Yunhuan Xiao (Ye group)
- Yevgeny Ostroumov (QMI)
- Doug Bonn (QMI)
- Philip Kim, Frank Zhao (Harvard)

Nature Physics 17, 519 (2021); PRB Lett. 103, L100501 (2021); Phys. Rev. Lett. 127, 157001 (2021)

MAX PLANCK – UBC – UTokyo CENTRE FOR QUANTUM MATERIALS STUTTGART • VANCOUVER • TOKYO

The idea: Engineer a high-*T_c* cuprate bilayer into a topological superconductor

Monolayer cuprate, e.g. Bi₂Sr₂CaCu₂O_{8+ δ}: $d_{x^2-y^2}$ superconductor

Nature Physics 17, 519 (2021)

- In the presented setup has superco
- This is a chiral ec
- Exhibits symmet

ing this $_{y^2} + id_{xy}$

h protected

Sal

Article

 $R_{\Box}(p,T)$

1. Ginzburg-Landau theory for twisted *d*-wave bilayers

$$\mathcal{F}[\psi_1, \psi_2] = f_0[\psi_1] + f_0[\psi_2] + A |\psi_1|^2 |\psi_2|^2 + B(\psi_1\psi_2^* + c.c.) + C(\psi_1^2\psi_2^{*2} + c.c.)$$

d-wave symmetry dictates $B = -B_0 \cos(2\theta)$

Assuming $\psi_1 = \psi$, $\psi_2 = \psi e^{i\varphi}$ we obtain free energy as a function of the phase

 $\mathcal{F}(\varphi) = \mathcal{F}_0 + 2B_0 \psi^2 \left[-\cos(2\theta)\cos\varphi + \mathcal{K}\cos(2\varphi) \right]$

$$\mathscr{K} = C\psi^2/B_0$$

2. Microscopic theory - Continuum Bogoliubov-de Gennes

$$\mathcal{H} = \sum_{\boldsymbol{k}\sigma a} \xi_{\boldsymbol{k}a} c^{\dagger}_{\boldsymbol{k}\sigma a} c_{\boldsymbol{k}\sigma a} + g \sum_{\boldsymbol{k}\sigma} \left(c^{\dagger}_{\boldsymbol{k}\sigma 1} c_{\boldsymbol{k}\sigma 2} + \text{h.c.} \right) + \sum_{\boldsymbol{k}a} \left(\Delta_{\boldsymbol{k}a} c^{\dagger}_{\boldsymbol{k}\uparrow a} c^{\dagger}_{-\boldsymbol{k}\downarrow a} + \text{h.c.} \right) - \sum_{\boldsymbol{k}a} \Delta_{\boldsymbol{k}a} \langle c^{\dagger}_{\boldsymbol{k}\uparrow a} c^{\dagger}_{-\boldsymbol{k}\downarrow a} \rangle.$$

$$\mathscr{H} = \sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} h_{\mathbf{k}} \Psi_{\mathbf{k}} + E_{0} \qquad h_{\mathbf{k}} = \begin{pmatrix} \xi_{\mathbf{k}} & \Delta_{\mathbf{k}1} & g & 0 \\ \Delta_{\mathbf{k}1}^{*} & -\xi_{\mathbf{k}} & 0 & -g \\ g & 0 & \xi_{\mathbf{k}} & \Delta_{\mathbf{k}2} \\ 0 & -g & \Delta_{\mathbf{k}2}^{*} & -\xi_{\mathbf{k}} \end{pmatrix}$$

3. Excitation spectra in the bilayer for $d_{x^2-y^2} + e^{i\phi}d_{xy}$ order parameter

Time-reversal broken phase for any $\varphi \neq 0, \pi$

 $(d_{x^2-y^2} + e^{i\phi}d_{xy}) \xrightarrow{\mathcal{T}} (d_{x^2-y^2} + e^{-i\phi}d_{xy})$

0.5

0.0

4. Topological superconductivity, protected edge modes

5. Self-consistent theory on the lattice

Hubbard model with nn attraction and on-site repulsion

$$H = -\sum_{ij,\sigma a} t_{ij} c_{i\sigma a}^{\dagger} c_{j\sigma a} - \mu \sum_{i\sigma a} n_{i\sigma a}$$
$$+ \sum_{ij,a} V_{ij} n_{ia} n_{ja} - \sum_{ij\sigma} g_{ij} c_{i\sigma 1}^{\dagger} c_{j\sigma 2},$$

Solve using standard mean-field decoupling in the pairing channel for commensurate twist angles

$$\theta_{m,n} = 2 \arctan(m/n)$$

Self-consistent theory on the lattice

Long strip geometry

Interaction effects, flat bands, graphene similarities?

Magic angles and current-induced topology in twisted nodal superconductors

Pavel A. Volkov,^{*} Justin H. Wilson, and J. H. Pixley

Department of Physics and Astronomy, Center for Materials Theory,

Rutgers University, Piscataway, NJ 08854, USA

(Dated: December 16, 2020)

Self-consistently determined phase diagram - present work (assuming interaction-induced s-wave instability)

50

Artificial BSCCO Twist Junctions

F

Microscopic model - Continuum Bogoliubov-de Gennes

$$\mathcal{H} = \sum_{\boldsymbol{k}\sigma a} \xi_{\boldsymbol{k}a} c^{\dagger}_{\boldsymbol{k}\sigma a} c_{\boldsymbol{k}\sigma a} + g \sum_{\boldsymbol{k}\sigma} \left(c^{\dagger}_{\boldsymbol{k}\sigma 1} c_{\boldsymbol{k}\sigma 2} + \text{h.c.} \right) + \sum_{\boldsymbol{k}a} \left(\Delta_{\boldsymbol{k}a} c^{\dagger}_{\boldsymbol{k}\uparrow a} c^{\dagger}_{-\boldsymbol{k}\downarrow a} + \text{h.c.} \right) - \sum_{\boldsymbol{k}a} \Delta_{\boldsymbol{k}a} \langle c^{\dagger}_{\boldsymbol{k}\uparrow a} c^{\dagger}_{-\boldsymbol{k}\downarrow a} \rangle.$$

We wish to understand how the anomalous increase in $I_c R_N$ follows from a theory of Josephson tunnelling between twisted *d*-wave superconductors.

One can show that the interlayer critical current has the form

$$I_{c}(T) = \sum_{\mathbf{k}} \Delta_{\mathbf{k}1} \Delta_{\mathbf{k}2} \Omega(\xi_{k}, T)$$

where $\Omega(\xi_k, T) \ge 0$. In a dSC we have

Effect of temperature

- Thermal excitations break Cooper pairs and remove their contribution to the supercurrent.
- At low *T* this happens primarily in the nodal regions
- Low-*T* thermal excitations therefore initially remove **NEGATIVE** contributions to I_c which is thus expected to INCREASE as a function of temperature

Experimental efforts: Evidence for T-broken phase

Artificial BSCCO Twist Junctions

Experiment [Zhao et al., arXiv:2108.13455] observes "fractional Shapiro steps" near 45 degree twist

Philip Kim Group (Harvard)

Fractional Shapiro steps can reflect the π -periodic I-V curves

NEW: Field-Free **Josephson Diode Effect** in twisted BSCCO (from Alex Cui, Kim Group @ Harvard)

For samples with twist **close to 45**° they observe $|I_c^+| \neq |I_c^-|$

Because the current is odd under time reversal the non-reciprocal diode effect requires broken time reversal symmetry

Josephson Diode: $I_c^+ < |I_{bias}| < I_c^-$

$\mathcal{F}[\psi_1, \psi_2] = \mathcal{F}_0[\psi_1] + \mathcal{F}_0[\psi_2] + A|\psi_1|^2|\psi_2|^2$ $+ B(\psi_1\psi_2^* + \text{c.c.}) + C(\psi_1^2\psi_2^{*2} + \text{c.c.})$

d-wave symmetry dictates $B = -B_0 \cos(2\theta)$

Theory: Diode effect in twisted Bi2212 bilayers

However, if the NORMAL state is \mathcal{T} -respecting one would expect to start randomly from either free-energy minimum.

-> One needs a measurement protocol that reproducibly initiates the system in the same minimum.

A new theory prediction: The diode effect must vanish at exact 45° twist

DALL-E: "Two scientists pondering twisted high-Tc cuprate superconductor"

Thank you!

Group members: O. Can

T. Tummuru E. Lantagne-Hurtubise

Summary and outlook

- Natural models of coupled layers of *d*-wave SC predict a T-broken phase when the twist angle is close to 45°
- The resulting phase is fully gapped and over much of the phase diagram also topologically non-trivial
- Topological phase will show an even number of protected chiral edge modes
- Gap opening can be detected through various spectroscopies (ARPES, STM)
- T-breaking can be probed directly (polar Kerr effect, SC) diode effect, fractional Shapiro steps)

Some interesting open questions:

- What is the best way to observe the topological phase experimentally?
- 2. Are there any interesting uses for this novel topological superconducting phase once identified?
- 3. Are there other 2D systems (beyond graphene, chalcogenides, cuprates) that will produce interesting new behaviors under twist or similar geometries?

Optical probes: Preliminary results (Ziliang Ye group, SBQMI)

$\sigma_{ m H}$ **Anomalous Hall and polar Kerr effect** (with O. Can, X.-X. Zhang, C. Kallin)^K

Polar

Kerr angle is related to Hall conductivity $\sigma_{\rm H}(\omega) = [\sigma_{xy}(\omega) - (\sigma_{yx}(\omega)^2)/2]/2$

with $heta_{
m K}$

$$\theta_{\rm K}(\omega) = \frac{4\pi}{\omega} {\rm Im} \left(\frac{\sigma_{\rm H}(\omega)}{n(n^2 - 1)} \right)$$

This can be caleulated from the standard Kubo formula

$$\sigma_{xy}(\nu_n) = \frac{\mathrm{i}e^2 T}{\nu_n} \sum_{\mathbf{k},\omega_n} \mathrm{Tr}[\nu_x G_0(\mathbf{k},\omega_n)\nu_y G_0(\mathbf{k},\omega_n+\nu_n)]$$

• The Hall conductivity is nonzero and large in the d+id' state of twisted Bi-2212 • The signal is about 3 orders of magnitude stronger than that predicted for Sr₂Ru0₄; this is chiefly due to much larger SC gap in the cuprate. $v_i = \partial (k) / \partial_i$ 2×2

PRL 127, 157001 (2021)

 2×2

Finite *T* behavior

FIG. 3. Lattice model results. Panels (a,b) show the temperature dependence of the minimum gap Δ_{\min} , the maximum gap Δ_{\max} and phase φ , based on a fully self-consistent lattice calculation for coupled layers with commensurate twist angles $\theta_{1,2} \simeq 53.13^{\circ}$, and $\theta_{2,5} \simeq 43.60^{\circ}$ corresponding to a unit cell with 10 and 58 sites, respectively. Panels (c-e) show zero

Real Bi2212 structure

4