Collaborators:

Peter Rickhaus Fokko de Vries Shuichi Iwakiri Elias Portolés Alexandra Mestre Tora Petar Tomič Giulia Zheng Michele Masseroni Klaus Ensslin **hBN** supply: Kenji Watanabe Takashi Taniguchi Theory:

Aitor Garcia-Ruiz Vladimir Fal'ko Jihang Zhu Allan McDonald

Graphene-based nanostructures Part II: Twisted bilayer graphene

Thomas Ihn

Ming-Hao Liu Marcin Kurpas Klaus Richter

 $I_{\rm s}/I_{\rm r} = 1.48$

OSIT Quantum Science and Technology

National Centre of Competence in Research

Outline

- Twisted bilayer graphene: brief historical introduction
- Fabrication
- Large twist angles
- Small twist angles
- Magic angle
- Twisted double bilayer graphene

Twisting graphene

Graphene Bilayer with a Twist: Electronic Structure

J. M. B. Lopes dos Santos,¹ N. M. R. Peres,² and A. H. Castro Neto³

Phys. Rev. Lett. 99, 256802 (2007).

Observation of Van Hove singularities in twisted graphene layers

Guohong Li¹, A. Luican¹, J. M. B. Lopes dos Santos², A. H. Castro Neto³, A. Reina⁴, J. Kong⁵ and E. Y. Andrei¹*

Nature Physics 6, 109 (2010).

Twisting graphene

Two copies of the 1st Brillouin zone are rotated relative to each other

Flat bands emerge for small twist angles

E. Suárez Morell et al, Phys. Rev. B 82, 121407 (2010).

Tight binding model

also based on comparison to DFT calculations

Magic angles: the key to generate flat bands

R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci. U.S.A. 108, 12233 (2011).

Twist angle as a knob to tune the dispersion relation

Dry transfer technique

glass PDMS PC stack graphite SiO₂ 150 °C P.J. Zomer *et al*, Appl. Phys. Lett. **105**, 013101 (2014)

PC: Polycarbonate PDMS: Polydimethylsiloxane

Pick-up performed in glove box with Ar atmosphere using a micromanipulator

Annealing in Ar/H₂ atmosphere at 350°C

The tear and stack method

K. Kim et al., Nano Lett. 16, 1989 (2016)

Large twist angles: The electronic thickness of graphene

Extracted interlayer capacitance: $C_m = 7.5 \, \mu {
m F}/{
m cm}^2$, three times larger than expected from layer separation!

Consequence: graphene has a finite electronic thickness of $~t_{
m g}=2.6~{
m \AA}$ ~!

P. Rickhaus et al, Science Advances 6, eaay8409 (2020).

Small twist angles: Topology in twisted bilayer graphene

Probability density of a selected state (including directionality of helical curents)

P. San-Jose and E. Prada, Phys. Rev. B 88, 121408 (2013).

Local density of states (including lattice relaxation and disorder)

M. Andelković et al., Phys. Rev. Mater. 2, 034004 (2018).

Local density of states measured by STM

(c) $V_{\rm g} = -50$ V, V = 0.1 V

S. Huang et al., Phys. Rev. Lett. 121, 037702 (2018).

P. Rickhaus et al, Nano Lett. 18, 6725 (2018).

P. Rickhaus et al, Nano Lett. 18, 6725 (2018).

in 1D: $k_{
m F} \propto n_{
m in}$ Moiré periodicity: $\lambda = 34\,{
m nm}$

Height of moiré unit cell: $h = \frac{\sqrt{3}\lambda}{2} = 29 \,\mathrm{nm}$ Cavity length: $L = 400 \,\mathrm{nm}$

Magnetic field periodicity fits to

$$\Delta B = \frac{\Phi_0}{Lh} = \frac{h}{e} \frac{1}{Lh}$$

P. Rickhaus et al, Nano Lett. 18, 6725 (2018).

Magic angle twisted bilayer graphene: correlated insulators

Y. Cao et al, Nature 556, 80 (2018).

Magic angle twisted bilayer graphene: superconductivity

Y. Cao et al, Nature 556, 43 (2018).

Magic angle twisted bilayer graphene: gate tunable Josephson junction

Magic angle twisted bilayer graphene: gate-tunable SQUID

E. Portolés et al, 2D Mater. 9, 014003 (2022).

Magic angle twisted bilayer graphene: Little-Parks effect

Magic angle twisted bilayer graphene: Little-Parks effect

S. Iwakiri *et al*, arXiv:2308.07400.

Twisted double bilayer graphene

Our work on twisted double bilayer graphene

Decoupled layers:

Band gap in twisted double bilayer graphene by crystal fields

P. Rickhaus et al, Nano Lett. 19, 8821 (2019).

Here: the same gate voltage is applied to the fine gate and the top gate

Lateral device layout typical carrier mobility: 25'000 cm²/Vs mean free path: ~ 350 nm Moiré lattice constant: ~ 6 nm - etching mask fine gate 300 I Contacts 60 2800 1200 global topgate \cap

all lengths in nanometers

Here: the same gate voltage is applied to the fine gate and the top gate

 ΔG : Smooth background subtracted from raw data

A rich phase diagram

Coexistence of electrons and holes in the two layers (new device!)

P. Rickhaus et al., Science 373, 1257 (2021)

Coexistence of electron and hole gases

Resistance peak at B_{\perp} = 0: indicative of an energy gap brought about by electron-hole correlations

in-plane separation of carriers: ~ 10 nm separation of e/h layers: ~ 4 Å

Quantifying the energy gap

P. Rickhaus et al., Science 373, 1257 (2021)

Energy gap as a function of displacement field

Scattering between minivalleys in twisted double bilayer graphene

Resistance peaks analogous to magneto-intersubband oscillations

P. Tomić et al, Phys. Rev. Lett. 128, 057702 (2022).

Conclusion

- Twisting 2D materials offers completely new ways of tailoring materials
- The resulting physics is rich and full of surprises
- Twisted materials can be the basis for monolithic devices, in which multiple phases of matter are combined

 $I_{\rm s}/I_{\rm r} = 1.48$