

Cavity magnonics

Yaroslav M. Blanter

Kavli Institute of Nanoscience, Delft University of Technology the Netherlands

- Intro: Spin waves and magnons
- Magnet-cavity coupling
- Level attraction
- Chiral magnon propagation
- Quantum magnonics

Yaroslav M. Blanter

Cavity magnonics

Delft University of Technology

- Sanchar Sharma
- Xiang Zhang
- Tao Yu
- Marios Kounalakis

Tohoku University

- Mehrdad Elyasi - Gerrit Bauer

- Artem Bondarenko
- Enes Ilbuga
- YMB

Toeno van der Sar and van der Sar Lab
Slava Dobrovitski

Cambridge University Beijing Normal University

- James Haigh

- Chuanpu Liu - Haiming Yu

- University of Manitoba
- Bimu Yao
- Can-Min Hu

- Iran University of Science and Technology
 - Babak Zare Rameshti

ICTP Summer School, September 2023

Yaroslav M. Blanter

Larmor precession

Magnetic moment in external field

Torque: $\mathbf{\tau} = \mathbf{M} \times \mathbf{B}$

1 Yaroslav M. Blanter

Magnons are elementary excitations of magnetic structure

Classical limit (large occupation numbers): spin waves

Image credit: Jens Böning, Wikimedia Commons

Spin Hamiltonian (simplest): $\hat{H}_S = -J \sum_{\langle ij \rangle} \hat{S}_i \cdot \hat{S}_j - g \mu_B B \cdot \sum_i \hat{S}_i$

Spin wave spectrum of an isotropic 1D FM chain: $\hbar\omega(k) = 2JS \left(1 - \cos ka\right) + g\mu_B B$

2 Yaroslav M. Blanter

Imaging of spin waves

Spin waves in YIG films imaged by NV center magnetometry

I. Bertelli, J. J. Carmiggelt, T. Yu, B. G. Simon, C. C. Pothoven, G. E. W. Bauer, YMB, J. Aarts, and T. van der Sar, Science Adv. **6**, eabd3556 (2020).

Yaroslav M. Blanter

Yttrium Iron Garnet – ferrimagnetic insulator with the highest magnetic quality

Gilbert damping parameter:

Yaroslav M. Blanter

Very recently: also vanadium tetracyanoethylene

Gilbert damping comparable to YIG

Q. Hu ... G . Fuchs, arXiv:2212.04423

Surface spin waves in YIG (Damon-Eschbach modes) Technische Universiteit Delf

YIG: Dispersion relation is very anisotropic

Two competing mechanisms: Exchange and dipolar interactions

Spin waves travelling perpendicular to the magnetization

Quantization of spin waves

Holstein-Primakoff transformation

$$egin{aligned} \hat{S}_{+} &= \hbar\sqrt{2S}\sqrt{1-rac{\hat{m}^{\dagger}\hat{m}}{2S}}\hat{m} \ \hat{S}_{-} &= \hbar\sqrt{2S}m^{\dagger}\sqrt{1-rac{\hat{m}^{\dagger}\hat{m}}{2S}} \ \hat{S}_{z} &= \hbar\left(S-\hat{m}^{\dagger}\hat{m}
ight) \end{aligned}$$

Plane waves:

$$\hat{m}_k = \frac{1}{\sqrt{N}} \sum_{R_i} \exp\left(-ik \cdot R_i\right) \hat{m}_k$$

Linearized transformation:

One-mode linear Hamiltonian:

$$\hat{H} = \hbar \omega_m \hat{m}^\dagger \hat{m}$$

Technische Universiteit Delft

Microwave cavities

Copper box cavity: A. Bienfat P. Bertet, Nature **531** 74 (2016)

Lumped-element LC resonator: F. Yoshihara K. Semba, Nature Physics **13** 44 (2017)

Microwave cavities

Generally: Multimode cavities

Quantize vector potential (homogeneous situation):

$$\begin{split} \mathbf{A}(\mathbf{r},t) &= \mathbf{A}^{+}(\mathbf{r},t) + \mathbf{A}^{-}(\mathbf{r},t), \quad \mathbf{A}^{+} = (\mathbf{A}^{-})^{\dagger} \\ \mathbf{A}^{+}(\mathbf{r},t) &= \sum_{k} u_{k}(\mathbf{r}) \hat{a}_{k} e^{-i\omega_{k}t}, \omega_{k} = ck/n \quad \left(\nabla^{2} + k^{2}\right) u_{k} = 0 \\ \\ \text{Free cavity Hamiltonian:} \quad \hat{H} &= \sum_{k} \hbar \omega_{k} a_{k}^{\dagger} \hat{a}_{k} \\ \\ \text{Fields:} \quad \hat{\mathbf{E}}^{+}(\mathbf{r},t) &= i \sum_{k} \sqrt{\frac{\hbar \omega_{k}}{2V \varepsilon \varepsilon_{0}}} u_{k}(\mathbf{r}) \hat{a}_{k} e^{-i\omega_{k}t} \\ \\ \quad \hat{\mathbf{B}}^{+}(\mathbf{r},t) &= i \sum_{k} \sqrt{\frac{\hbar}{2V \varepsilon \varepsilon_{0} \omega_{k}}} \nabla \times u_{k}(\mathbf{r}) \hat{a}_{k} e^{-i\omega_{k}t} \\ \\ \\ \text{Mode volume:} \quad V_{k} &= \frac{\int |E_{k}|^{2} dV}{\max |E_{k}|^{2}} \end{split}$$

In most situations: Want to work with one mode

Yaroslav M. Blanter

9

Magnet-cavity Interaction

Mechanism: interaction of magnetization with the cavity field $M \cdot B$ Hamiltonian of an interaction of a single cavity mode with a single (almost resonant) magnon mode:

$$\hat{H} = \hbar\omega_c \hat{a}^{\dagger} \hat{a} + \hbar\omega_m \hat{m}^{\dagger} \hat{m} + g \left(\hat{a}^{\dagger} \hat{m} + \hat{a} \hat{m}^{\dagger} \right)$$

Strong coupling in a cavity predicted by Soykal and Flatte, Phys. Rev. Lett. **104**, 077202 (2010)

g – coupling constant Strong coupling regime means: $\kappa_c, \kappa_m \ll g \ll \omega_c, \omega_m$ O Yaroslav M. Blanter

Interaction

YIG film in a cavity

Hübl et al, Phys. Rev. Lett. **111**, 127003 (2013)

11 Yaroslav M. Blanter

Technische Universiteit Delft

Interaction

Tabuchi et al, Phys. Rev. Lett. **113**, 083603 (2014)

Normal mode splitting between a magnon (YIG sphere) and a cavity mode

12 Yaroslav M. Blanter

Magnon spintronics

Spin waves can carry information:

Ferromagnetic metals: Spin current is carried by electrons – Ohmic dissipation

Ferromagnetic insulators: Spin current carried by spin waves – Weak intrinsic damping of spin waves We want to be able to excite, manipulate, and read out spin waves

Cavity Magnonics, Babak Zare Rameshti, Silvia Viola Kusminskiy, James A. Haigh, Koji Usami, Dany Lachance-Quirion, Yasunobu Nakamura, Can-Ming Hu, Hong X. Tang, Gerrit E. W. Bauer, and YMB, Physics Reports **979**, 1 (2022). *Quantum magnonics: When magnon spintronics meets quantum information science*, H. Y. Yuan, Yunshan Cao, Akashdeep Kamra, Rembert A. Duine, and Peng Yan, Physics Reports **965**, 1 (2022).

13 Yaroslav M. Blanter

Coherent manipulation

Normal mode splitting between a magnon (YIG sphere) and a cavity mode: Cavity-magnon polariton

They can drive cavity and magnon modes independently \rightarrow coherent superposition

Wolz et al, Communications Physics 3, 3 (2020)

4 Yaroslav M. Blanter

Coherent manipulation

Yaroslav M. Blanter ICTP Summer

Level repulsion and attraction

$$E = \frac{E_1 + E_2}{2} \pm \sqrt{\left(\frac{E_1 - E_2}{2}\right)^2 + g^2}$$

16 Yaroslav M. Blanter

Dissipative coupling

A magnetic sphere in a lossy Fabry-Perot cavity

Cavity photon spectrum:

- Localized waves at resonances
- Continuous travelling waves away from resonances

Coherent coupling to resonant modes – leads to level repulsion

Coupling to travelling modes – dissipative, leads to level attraction

- Non-Hermitian Hamiltonian
- Competition between level repulsion and attraction

17 Yaroslav M. Blanter

TUDelftLevel attraction

Technische Universiteit Delft

M. Harder ... C.-M. Hu, Phys. Rev. Lett. 121, 137203 (2018) **18** Yaroslav M. Blanter ICTP Summer Scho

Level attraction

A magnetic sphere in a lossy Fabry-Perot cavity

B. Yao, T. Yu, X. Zhang, W. Lu, Y. Gui, C.-M. Hu, and YMB, Phys. Rev. B **100,** 214426 (20) **19** Yaroslav M. Blanter ICTP Summer School, September 2023

Dissipative coupling

20 Yaroslav M. Blanter

Experiment: Excitation of spin waves

Magnetic nanowire array; FMR used to excite spin waves

Thickness: Not sufficient to support surface modes (20 nm)

J. Chen, T. Yu, C. Liu, T. Liu, M. Madami, Ka Shen, J. Zhang, S. Tu, M. Shah Alam, Ke Xia, M. Wu, G. Gubbiotti, YMB, G E. W. Bauer, and H. Yu, Phys. Rev. B **100,** 104427 (2019)

21 Yaroslav M. Blanter

J. Chen, T. Yu, C. Liu, T. Liu, M. Madami, Ka Shen, J. Zhang, S. Tu, M. Shah Alam, Ke Xia, M. Wu, G. Gubbiotti, YMB, G E. W. Bauer, and H. Yu, Phys. Rev. B **100**, 104427 (2019)

22 Yaroslav M. Blanter

Theoretical model

We take for calculations s = 20 nm, a = 200 nm, d = 100 nm

Modes in the array: Close to the ferromagnetic resonance

$$\omega_{FMR} = \gamma \mu_0 \sqrt{H(H + M_0)}$$

Saturation magnatization

23 Yaroslav M. Blanter

Spin waves in films

Spin waves can travel in both directions Spin-momentum locking: stray fields are polarized in a certain direction

$$B(k) \propto \left(m_z - i rac{k}{|k|} m_y
ight)$$

T. Yu, C. Liu, H. Yu, YMB, and G E. W. Bauer, Phys. Rev. B 99.134424 (2019)

4 Yaroslav M. Blanter

Dipolar interactions

Free energy

 $F = -\mu_0 \int Mh^{dip} dr$ $h_{\beta}^{dip} = \frac{1}{4\pi} \partial_{\beta} \int dr' \frac{\partial_{\alpha} M_{\alpha}^{arr}(r')}{|r-r'|}$

- Only spin waves travelling in one direction generate dipolar fields above the film and thus couple to the array
- If the spin wave in the film is circularly polarized, it can only be excited in one direction
- Ellipticity leads to reduction of chirality

Couplings

Parallel

Anti-parallel

26 Yaroslav M. Blanter

Coherent coupling of a magnon to a qubit via a cavity

The qubit is resonant with the magnon; the cavity is detuned and only serves to provide controlled interaction

Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Science **349**, 405 (2015)

27 Yaroslav M. Blanter

Technische Universiteit Delft

Resonant coupling

28 Yaroslav M. Blanter

Dispersive coupling

Non-linear interaction (cross-Kerr):

$$\hat{H}_{int} = \tilde{K}\hat{m}^{\dagger}\hat{m}\hat{c}^{\dagger}\hat{c}$$

$$\hat{H}_q = \hbar \omega_q \hat{c}^\dagger \hat{c} + K \hat{c}^\dagger \hat{c}^\dagger \hat{c} \hat{c}$$

$$\hat{H}_m = \hbar \omega_m \hat{m}^\dagger \hat{m}$$

Shift of the frequency of one system depending on the state of another system

Resonant coupling

Coherent coupling of a magnon to a qubit via a cavity

Strong coupling between a qubit and a magnon

Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Science **349**, 405 (2015)

30 Yaroslav M. Blanter

Dispersive coupling

Additions of magnons one by one lead to discrete shifts of the qubit frequency

D. Lachance-Quirion, Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, and Y. Nakamura, Sci. Adv. 3, e1603150 (2017)

Yaroslav M. Blanter

Creation of quantum states

Resonant coupling regime

Da Xu, Xu-Ke Gu, He-Kang Li, Yuan-Chao Weng, Yi-Pu Wang, Jie Li, H. Wang, Shi-Yao Zhu, and J. Q. You, Phys. Rev. Lett. **130**, 193603 (2023)

32 Yaroslav M. Blanter

Magnon-qubit direct coupling

Magnon lifetime: short (100 ns); difficult to create non-trivial quantum states

Idea: Use natural non-linear interactions

M. Kounalakis, G. E. W. Bauer, and YMB, Phys. Rev. Lett. 109, 037205 (2022)

33 Yaroslav M. Blanter

Technische Universiteit Delft

Magnon-qubit coupling

M. Kounalakis, G. E. W. Bauer, and YMB, Phys. Rev. Lett. 109, 037205 (2022)

34 Yaroslav M. Blanter

Generation of cat states

Technische Universiteit Delft

M. Kounalakis, G. E. W. Bauer, and YMB, Phys. Rev. Lett. **109**, 037205 (2022) **35** Yaroslav M. Blanter ICTP Summer School, September 2023

Conclusions

Spin waves interact with external magnetic field:

- This interaction can be strong in microwave cavities
- They facilitate manipulation of spin waves
- This may result in unusual behavior such as level attraction or chiral propagation
- Quantum properties of magnons can be detected by a qubit
 - One can bring magnons to non-trivial quantum states