Closing the Quantum Metrology Triangle: Bloch oscillations in Josephson junctions

Fabian Hassler

RWTH Aachen University, Germany

Quantum metrology triangle

time:

Cesium-133 atom: 9,192,631,770 Hz precision 10-15

electric:

Connection between V and I

Connection between f and V

AC Josephson effect

AC-current source

 $I GHz \leftrightarrow 2\mu eV$

Josephson relations:

$$I = I_c \sin(\phi)$$

 $V = \frac{\hbar}{2e}\dot{\phi}$

AC Josephson effect

AC-current source

 $I GHz \leftrightarrow 2\mu eV$

Josephson relations:

$$I = I_c \sin(\phi)$$
$$V = \frac{\hbar}{2\rho} \dot{\phi}$$

realistic circuit

$$I_0 = \frac{\hbar G}{2e} \phi + I_c \sin \phi$$

ICTP Summer School, Bukhara, Sep. 22, 2023

AC-locking/synchronization

$$I(t) = \frac{hG}{2e}\dot{\phi} + I_c \sin \phi$$
$$I(t) = I_0 + I_1 \sin(2\pi f t)$$

synchronizing the AC Josephson effect with frequency $f_J = 2eV/h$ to the external drive

AC-locking/synchronization

$$I(t) = \frac{\hbar G}{2e} \dot{\phi} + I_c \sin \phi$$

$$I(t) = I_0 + I_1 \sin(2\pi f t)$$

synchronizing the AC Josephson effect with frequency $f_j = 2eV/h$ to the external drive

voltage standard (2019):

 $V = K_J f$

Josephson constant

$$K_J = 483597.84841698 \text{ GHz/V} \left(= \frac{2i}{h} \right)$$

AC-locking/synchronization

realistic circuit

$$I(t) = \frac{\hbar G}{2e} \dot{\phi} + I_c \sin \phi$$

$$I(t) = I_0 + I_1 \sin(2\pi f t)$$

precision 10-8

similar to Josephson relations:

$$\frac{\hbar}{2e}\dot{\phi} = V$$

 $I = I_c \sin(\phi)$

similar to Josephson relations:

$$\frac{h}{2e}\dot{\phi} = V$$

 $I = I_c \sin(\phi)$

Cooper pair box

the polarization charge acts as a vector potential

ICTP Summer School, Bukhara, Sep. 22, 2023

Cooper pair box

$$H = \frac{(Q + q_g)^2}{2C} - E_J \cos(h\Phi/2e)$$

the polarization charge acts as a vector potential

mechanical analog

Phase slip regime

· Small losephson junction with a shunt capacitance

- · Strong separation of bands
- · Lowest energy band depends strongly on q
- Approximately given by E(q) ≈ − E_Q cos(πq/e)

Phase slip regime

· Small Josephson junction with a shunt capacitance

s = 1

\$10

Closing the triangle

K. K. Likharev and A. B. Zorin 1985

Early experiment

Fig. 4. Temperature dependence of dV/dJ versus J for RF power 8.4B at f = 4 GHz. The curves are shifted in horizontal axis. The arrows show the expected positions of the Bloch peaks at $I = \pm 2\sigma f$.

We have carried out a set of measurements of the line width of Bloch conclinations in small hosphaon junctions biased through small-size high-ohmic resistors. We have shown that the line width, which we associate with the width of the DC response of the junction to small-signal RF radiation, does not decrease with decreasing temperature bolow 100-200 mK. This behavior can be coplained by a hocketorn effect in the resistors. A first glanse it userus hard to cool electrons in such a small watter boards and a larver commercial size of resistors.

Problem

replaced by

large resistance in oder to localize charge

resistance has to be close to the junction because of parasitic capacitances

Kuzmin, Pashkin, Zorin, Claeson, 1994

LC circuit (superconducting)

- whether charge or phase is a "good" quantum number depends in the ratio of the characteristic impedance $Z_0=\sqrt{L/C}$ to the von Klitzing constant $R_g=25\,\mathrm{k\Omega}$
- Charge localization needs large inductances. Demanding since $Z_{\rm Vac}=377~\Omega=2\alpha R_{\rm K}$

Idea

Arndt, Roy, FH, 2018

Problem: parasitic capacitances reduce V_c

$$V(q) = \frac{dE(q)}{dq} = V_c \sin(\pi q/e)$$
 $V_c = \frac{\pi E_Q}{e} \propto \frac{1}{C + C_p}$

Arndt, Roy, FH, 2018

Idea

Problem: parasitic capacitances reduce V_c

$$V(q) = \frac{dE(q)}{dq} = V_c \sin(\pi q/e)$$
 $V_c = \frac{\pi E_Q}{e} \propto \frac{1}{C + C_p}$

Solution: large impedance L with

$$Z_0 = \sqrt{L/C_p} > R_K$$

to localize the charges!!!!

Arndt, Roy, FH, 2018

Experiment I

Shaikhaidarov, ..., Il'ichev, Astafiev, Nature (2022)

Experiment 2

ICTP Summer School, Bukhara, Sep. 22, 2023

Experiment 3

Kaap, Scheer, FH, Lotkhov, (2023) submitted to PRL

Conclusion

- Bloch oscillations have been observed
- Large (super-)inductances allow to mitigate the problem with temperature
- · Accuracy not yet enough to close the quantum metrology triangle

Challenges in Implementation

- · Loss of coherence in Bloch oscillations
 - Landau-Zener tunneling into higher bands
 - Thermal noise from large biasing resistor
- · Preserving the high impedance environment
 - AC biasing lines introduce parasitic capacitances
 - Mitigated by large on-chip impedance

Challenges in Implementation

- · Loss of coherence in Bloch oscillations
 - Landau-Zener tunneling into higher bands
 - Thermal noise from large biasing resistor
- · Preserving the high impedance environment
 - AC biasing lines introduce parasitic capacitances
 - Mitigated by large on-chip impedance

use AC Josephson effect to replace the external drive

On chip AC drive

Using the AC-Josephson effect

- · Use Josephson oscillations to drive the phase-slip junction
- · Coupling via an LC-resonator

Relevant frequencies	$\omega_R, \omega_G, \omega_0 = (LC)^{-1/2}$
Relaxation timescales	$\tau_L = L/R, \tau_C = C/G$
Resistances	R, G^{-1} $R_c = V_c/l_c, Z_0 = \sqrt{L/C}$

Discussed in context of mutual synchronization of two conjugate quantum variables in: Hriscu, Nazarov, PRL (2013)

$$\omega_R = \frac{\pi V_c}{eR}, \omega_G = \frac{2eI_c}{\hbar G}$$

Using the AC-Josephson effect

- Rigid driving signal for large bias current $I_0 \gg I_c$ $\Rightarrow \varphi(t) \approx (I_0/I_c)\omega_G t = \omega_I t$
- Effective model in upper loop in case of resonance ω_J = ω₀

Influence of back action on the Josephson oscillations

Back action contribution

$$F(q, t) = \frac{\tau_L}{\omega_R} \int \frac{d\omega}{2\pi} \frac{1 - i\omega\tau_C}{1 - i\omega\tau_C - \omega^2/\omega_0^2} (\dot{q})_\omega e^{-i\omega t}$$

• Negligible in the regime $Z_0 \ll R$ and $\tau_L \ll \tau_C$

Influence of back action on the Josephson oscillations

Back action contribution

$$F(q, t) = \frac{\tau_L}{\omega_R} \int \frac{d\omega}{2\pi} \frac{1 - i\omega\tau_C}{1 - i\omega\tau_C - \omega^2/\omega_0^2} (\dot{q})_\omega e^{-i\omega t}$$

• Negligible in the regime $Z_0 \ll R$ and $\tau_L \ll \tau_C$

- Increases maximum step width ΔV for $R_Q = 6.45 \, \mathrm{k} \Omega \ll \mathrm{R} \lesssim \mathrm{Z}_0$

Influence of back action on the Josephson oscillations

Back action contribution

$$F(q, t) = \frac{\tau_L}{\omega_R} \int \frac{d\omega}{2\pi} \frac{1 - i\omega\tau_C}{1 - i\omega\tau_C - \omega^2/\omega_0^2} (\dot{q})_\omega e^{-i\omega t}$$

• Negligible in the regime $Z_0 \ll R \ \, \text{and} \ \, \tau_L \ll \tau_C$

- Increases maximum step width ΔV for $R_Q = 6.45 \, {\rm k}\Omega \ll {\rm R} \lesssim {\rm Z}_0$

Influence of back action on the Josephson oscillations

- For increasing ω_R/ω_G
 - Steps move closer to the blockade region \Rightarrow Smaller bias voltage V_0
 - Increased sensitivity to the effective driving strength Z_0/R_c § 2

Influence of circuit parameters

- · Parameter regions with robust dual Shapiro steps
- At fixed ratio ω_R/ω_G
 - Step width ΔV oscillates for varying Z_0/R_c
 - Faster oscillations for increasing ω_R / ω_G

Influence of circuit parameters

- · Parameter regions with robust dual Shapiro steps
- At fixed ratio $\omega_{\rm R}/\omega_{\rm G}$
 - Step width ΔV oscillates for varying Z_0/R_c
 - Faster oscillations for increasing ω_R/ω_G

For realistic circuit parameters

 Steps with Nyqvist-Johnson noise from the resistors

For realistic circuit parameters

 Steps with Nyqvist-Johnson noise from the resistors

For realistic circuit parameters

- Steps with Nyqvist-Johnson noise from the resistors
- · Increased robustness due to finite back action

 $L = 0.01 \,\mu\text{H}, C = 100 \,\text{fF}, R = 50 \,\text{k}\Omega, G = 0.1 \,\text{S}, I_c = 0.1 \,\mu\text{A}, \text{and } V_c = 50 \,\mu\text{V}$

For realistic circuit parameters

- Steps with Nyqvist-Johnson noise from the resistors
- · Increased robustness due to finite back action
- Feasible circuit parameters yield $I_{DC} = 1.6 \text{ nA} \ll 20 \text{ nA} \text{ at } V_c = 50 \,\mu\text{V}$ \Rightarrow Negligible Landau-Zener tunnelling

 $Z_0/R_c \approx 0.6, \omega_0/\bar{\omega} \approx 4, \omega_0 \tau_C \approx 0.04, \omega_0 \tau_L \approx 0.004, \text{ and } \omega_R/\omega_G \approx 6.5$ Corresponding to $L = 0.01 \ \mu\text{H}, \text{C} = 100 \ \text{H}, \text{R} = 50 \ \text{k}\Omega, \text{G} = 0.1 \ \text{S}, \text{I}_a = 0.1 \ \mu\text{A}, \text{and } \text{V}_a = 50 \ \mu\text{V}$

Geigenmüller, Schön, 1988

Conclusion

- · Circuit for dual Shapiro steps without an external AC drive
- Effective model equivalent to external AC drive for small back action
- Steps with increased robustness to thermal noise at realistic experimental parameters

 $L = 0.01 \,\mu\text{H}, \text{C} = 100 \,\text{fF}, \text{R} = 50 \,\text{k}\Omega$ $G = 0.1 \,\text{S}, \text{I}_{c} = 0.1 \,\mu\text{A}, \text{and } \text{V}_{c} = 50 \,\mu\text{V}$

arXiv:2307.03448

Phase slip regime

· Lowest band can be modeled as a phase-slip junction

$$V = V_c \sin \frac{\pi}{e} Q \stackrel{\text{Dual}}{\longleftrightarrow} I = I_c \sin \frac{2e}{\hbar} \phi$$

Critical voltage V_c relates to the width of the lowest band 2E_S

$$V_c = \frac{\pi}{e} E_S$$
 $E_S \approx E_C^{1/4} E_J^{3/4} e^{-\sqrt{8E_J/E_c}}$

J. Koch et al., Phys. Rev. A 76, 042319 (2007)

In an over-damped phase-slip junction

• High impedance environment $R \gg R_Q = h/4e^2$ • Localized charge $Q = \langle \hat{Q} \rangle$ • Classical equation of motion $R\hat{Q} = V_0 - V_C \sin \frac{\pi}{e} Q$ • Relevant scales

$$\omega_R = \frac{\pi V_c}{eR}, \quad q = \frac{\pi}{eQ}$$

Current to frequency relation

Dual Shapiro steps

Harnessing synchronization for quantum metrology

- Synchronization of Bloch oscillations with an AC-drive $V_0 + V_1 \sin \omega t = R\dot{Q} + V_c \sin \frac{\pi}{a}Q$
- Steps of constant current I_{DC} = eω/π
- · Missing link in quantum metrology triangle

K. K. Likharev and A. B. Zorin, J. Low Temp. Phys. 59, 347 (1985)

Dual Shapiro steps

Experimental demonstrations

Current to frequency relation

• Dimensionless equation of motion $\frac{1}{\partial w_{t}}\dot{q} = \frac{v_{0}}{V_{c}} - \sin q$ • Time *T* for a single phase-slip $\omega_{R}T = \int_{0}^{2\pi} \frac{dq}{V_{0}/V_{c} - \sin q} = \frac{2\pi}{\sqrt{(V_{0}/V_{c})^{2} - 1}}$ • DC-current

$$I_{DC} = \frac{2e}{T} = \frac{e}{\pi} \omega_R \sqrt{(V_0/V_c)^2 - 1} = 2ef_B$$

For realistic circuit parameters

S. Lotkhov and F. Kaap, private communications

Using the AC-Josephson effect

· Dual circuit is well established as a voltage standard

$$|| - V - R\dot{Q} + V_c \sin \frac{\pi}{e} Q + L\dot{Q}$$

$$V = R\dot{Q} + V_c \sin \frac{\pi}{e} Q + L\dot{Q}$$

$$\frac{V_0}{V_c} = \frac{1}{\omega_R} \dot{q} + \sin q + \frac{L}{\omega_R R} \ddot{q}$$

Dual circuit

ICTP Summer School, Bukhara, Sep. 22, 2023