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Overview

 Introduction: Superconducting Diode Effect (SDE)

 Minimal model: Josephson junction with finite Cooper pair 

momentum

 Equilibrium properties: Andreev bound states, 

anomalous Josephson effect & SDE

 Finite bias voltage rectification: Multiple Andreev 

reflection (MAR) mechanism

 Microscopic model for SDE: Spin-Orbit + Zeeman field

 Conclusions & Outlook

Zazunov, Rech, Jonckheere, Grémaud, Martin & Egger, 

arXiv:2307.14698 & arXiv:2307.15386



Diode: nonreciprocal/asymmetric response

Nonreciprocal

feelings

asymmetric response (sports/politics)

one-way (semi-transparent) mirror



Nonreciprocal DC current vs. applied voltage:

Ideal diode behavior:

I

V

Semiconductor diode 

p-n junction diode

resistive (dissipative) rectification

forward regionbackward region

𝑉 = 𝑅 𝐼 𝐼 𝑅 −𝐼 ≠ 𝑅(𝐼)

𝑅 𝐼 = ቊ
𝑅0 𝐼 > 0
∞ 𝐼 < 0



p-n junction diode

Nonreciprocity –

why does it work?



Key requirement for nonreciprocal charge transport: 

broken inversion symmetry 

→ current direction changes depletion layer thickness 

→ asymmetric resistivity

Inversion symmetry breaking

Inversion symmetry

breaking:

necessary but not 

sufficient criterion



tunneling current in conventional (N-I-N) junction

Broken inversion symmetry does not guarantee directional 

response…  

Example:

1D scattering problem with asymmetric potential barrier

L R

V

S-matrix is symmetric in the presence of 

time-reversal symmetry 

𝐼 −𝑉 = −𝐼(𝑉)→
no rectification!



 Nonreciprocal current response often found if both inversion

and time reversal symmetry (TRS) are broken (e.g., magnetic field)

 can also be achieved through interaction effects in TR-invariant 

systems

p-n junction diode: 

TRS not broken in 

equilibrium (𝑉 = 0)



Rectifiers are usually based on semiconductor diodes:

convert alternating EM field into directed current

Q1: Superconducting dissipationless (V=0) version of

classical diode ? → Superconducting Diode Effect (SDE)

Q2: Superconducting dissipative version (finite V) ? 

→ SDE out of equilibrium

(assume ideal diode behavior)



Brief reminder: Josephson effect

 Tunnel contact (tunnel amplitude 𝜆) between two

(s-wave BCS) superconductors at phase difference φ

 Tunneling of Cooper pairs (charge 𝟐𝒆) → 

2𝜋-periodic coupling energy 𝐸𝐽𝑜𝑠 𝜑 = −𝐸𝐽 cos 𝜑

with Josephson coupling 𝐸𝐽∼ 𝜆2

 Josephson equilibrium (DC) current-phase relation

(CPR) from phase derivative of free energy: 

𝐼 𝜑 =
2𝑒

ℏ

𝑑𝐸𝐽𝑜𝑠 𝜑

𝑑𝜑
= 𝐼𝑐 sin𝜑 with critical current 𝐼𝑐 =

2𝑒𝐸𝐽

ℏ

φ/2 -φ/2
λ

dissipationless supercurrent



AC Josephson effect

 Application of constant bias voltage V → time-

dependence of phase difference according to

second Josephson relation

𝜑 𝑡 = 𝜑 0 +
2𝑒

ℏ
𝑉𝑡

 NB: First Josephson relation holds only in tunneling

limit! In general non-sinusoidal CPR.

 Single-channel Josephson junction with transmission

probability 𝜏: 𝐼 𝜑 =
𝑒Δ

2ℏ

𝜏 sin 𝜑

1−𝜏 sin2
𝜑

2



→ need polarity-dependent critical current 𝑰𝒄+ ≠ |𝑰𝒄−|

SDE: dissipationless equilibrium supercurrent flows along

one direction but not in the opposite one

I

V

Rectification regime:

Superconducting diode effect (SDE) 

NB: Here for Josephson junction between „skewed“ superconductors (SCs), 

but SDE exists also for junction-free bulk SCs…

𝑰𝒄+ < 𝑰 < |𝑰𝒄−|



SDE efficiency

I

V

“breakdown voltage”

SDE efficiency 𝜂0 =
𝐼𝑐+ − |𝐼𝑐−|

𝐼𝑐+ + |𝐼𝑐−|

Ideal case:  𝜼𝟎 = 𝟏



Rashba superconductor:

noncentrosymmetric

artificial superlattice with

[Nb/V/Ta] units

First report of  SDE (in bulk SC)



Demonstration of magnetically controllable superconducting diode:

alternating switching between super- and normal-conducting state by changing 

the sign of the applied current or a small magnetic field

Superconducting diode effect: 

nonreciprocity of critical current for metal-superconductor transition



SDE 

Pal et al., Nat. Phys. 2022

many experimental confirmations

since 2020
Ando et al., Nature 2020

→ very hot field

Example: Rectification in NiTe2 JJ



GL free energy in the presence of Rashba spin orbit term:

Critical current different

for  opposite directions:

Theory: Bulk case



Finite Cooper pair momentum (FCPM) 

Supercurrent-carrying state = macroscopic condensate

of Cooper pairs at finite momentum 𝑸

 Gauge 𝐴 = 0 → GL order parameter

oscillates in space!  

→  Superconductor (SC) condensate energy 𝐸𝑄 =
𝑁𝑄2

2 2𝑚

→  energy cost with growing 𝑄 limits max. supercurrent

 Galilei-invariant system: current 𝐽𝑄 = 𝑒𝜕𝑄𝐸 = 𝑁𝑒𝑣𝑄 with 

superfluid velocity 𝑣𝑄 = 𝑄/2𝑚

 𝑄 ≠ 0 state is metastable (very long lifetime), carries non-

dissipative supercurrent

(very different from current-carrying state in a normal metal!)

Ψ𝑄 𝑥 = Ψ𝑒𝑖𝑄𝑥/ℏ



Finite Cooper pair momentum: SDE

Ground state with 𝑸 ≠ 𝟎 is (almost) sufficient (but not 

necessary) for obtaining the SDE !
→ broken TRS and broken inversion symmetry

Recipes to realize such a ground state:
 Fulde-Ferrell (FF) state: spontaneous symmetry breaking in 

Zeeman field for clean SC [Larkin-Ovchinnikov (LO) state combines

degenerate ±𝑄 states & preserves TRS] Daido et al. PRL 2022

 Helical SC: interplay of spin-orbit coupling and Zeeman field

generates effective 𝑄 ≠ 0 (magnetochiral anisotropy), robust 

against disorder Edelstein JPCM 1996; 

Zazunov, Egger, Jonckheere & Martin, PRL 2009;

Yuan & Fu, PNAS 2022 

 SC-ferromagnet heterostructure: leakage of magnetism

induces FF state in SC                 Mironov, Mel‘nikov & Buzdin, APL 2018



FFLO superconductor  

LO: In gap equation, q and -q solutions 

are degenerate states. Degeneracy is lifted

by linear combinations of q and -q

spatially uniform magnetic 

Zeeman field → FFLO pairing 

with FCPM q advantageous

→ spatial modulation of order 

parameter

But: one needs clean limit and 

absence of orbital field effects 

Review:  Matsuda & Shimahari, JPSJ 2007

BCS FFLO



Normal (Δ=0), BCS 

(uniform) & FFLO 

phase meet at 

tricritical point

Phase diagram of 2D superconductor 

in parallel magnetic field 

(no orbital effects)

From now on: consider Josephson diode

= SDE in a Josephson junction



In presence of either TRS or inversion

symmetry: CPR odd under phase reversal

If both symmetries are broken, e.g., by FCPM mechanism, 

one may find the anomalous Josephson effect: 

finite supercurrent flows for 𝝋 = 𝟎

Tunnel junction limit → standard Josephson relation but with 

anomalous phase shift:   𝐼 𝜑 = 𝐼𝑐 sin 𝜑 + 𝜑0 →  no SDE 

→ SDE only possible beyond tunnel junction limit!

Anomalous Josephson effect



generated by interplay of 

spin-orbit coupling & 

magnetic Zeeman field (→ 

anomalous Josephson effect)

skewed CPR from CP 

cotunneling (→ effect 

beyond tunneling limit)

Josephson diode conditions

Keeping only the lowest few harmonics in CPR: 

From this CPR →

→ SDE generically happens away from deep tunneling

limit if anomalous Josephson effect is present

Zazunov, Egger, Jonckheere & Martin, PRL 2009; 

Brunetti, Zazunov, Kundu & Egger, PRB 2013

𝚫𝑰𝒄 = 𝑰𝒄+ − 𝑰𝒄− ∝ 𝒂𝟏𝒃𝟐



Josephson diode effect

B B

FCPM = finite Cooper pair momentum

Josephson junction geometry with helical SCs

Case study: SDE due to FCPM



B

I+ large Josephson diode effect 

observed  

 FCPM model seemingly explains 

the main observations

Measured SDE efficiency of up to 𝜼𝟎 ≈ 𝟒𝟎%
𝜂0 =

𝐼𝑐+ − |𝐼𝑐−|

𝐼𝑐+ + |𝐼𝑐−|



Davydova, Prembabu & Fu, Sci. Adv. (2022)

 FCPM captures simultaneous breaking of TR & inversion symmetries

 Single-channel limit: Transmission probability 𝜏 away from deep tunneling 

regime 𝜏 ≪ 1

Josephson junction as short weak link between helical SCs 

FCPM   𝑸 = 𝟐𝒒 (assumed identical on both sides)

→ 1D low-energy Bogoliubov-de Gennes (BdG) Hamiltonian 
with weak link at 𝑥 = 0 and coherence length 𝜉 = ℏ𝑣𝐹/Δ

FCPM model for Josephson diode effect

Nambu spinor states at x=0- and x=0+  connected by 𝜏-dependent 

transfer matrix:   matching condition



 kinetic energy linearized near Fermi points

 q and 𝜑 dependent SC phases gauged away from Δ(x) → 

𝐻𝛼=± =
𝛼𝑣𝐹(−𝑖𝜕𝑥 + 𝑞) Δ

Δ −𝛼𝑣𝐹(−𝑖𝜕𝑥 − 𝑞)
Doppler 

shift from 

FCPM 

φ = 0 (1D bulk SC): quasiparticle dispersion has different spectral gaps 

for right and left movers

Ballistic limit: full transparency 𝜏 = 1

No backscattering → two independent chiral channels

(right/left movers α = ±) 

Matching condition:  Ψ 0− = 𝑒𝑖𝜑/2 0
0 𝑒−𝑖𝜑/2

Ψ(0+)

Δ± = Δ ± 𝑣𝐹|𝑞| Here: we assume 𝑣𝐹|𝑞| < Δ, 
otherwise gapless SC



Spectral regimes

Depending on quasiparticle energy 𝐸, different types of

quasiparticle states exist (for arbitrary 𝜏):

𝑬 < 𝚫−: current-carrying Andreev bound states

(subgap states spatially localized near x=0)

𝑬 > 𝚫+: propagating continuum quasiparticles

𝚫− < 𝑬 < 𝚫+: mixed-character states (evanescent in 

one direction, propagating in the other)

Eigenstates in different regimes are related by

analytic continuation → unified approach



Andreev bound states: ballistic case

Closed analytical results

possible in ballistic case

(even for V>0) 
𝐸± 𝜑 = ±Δ cos 𝜑/2 − 𝑞𝜉



CPR = Andreev + continuum contribution, at T=0 given by

→ polarity-dependent critical currents 

→ SDE efficiency follows as

Josephson diode effect: ballistic limit

𝐼𝐴 𝜑 =
𝑒Δ

ℏ
sin

𝜑

2
sgn cos

𝜑

2
− 𝑞𝜉

𝐼𝑐𝑜𝑛𝑡 =
2𝑒Δ

𝜋ℏ
𝑞𝜉

𝜂0 =
𝐼𝑐+ − |𝐼𝑐−|

𝐼𝑐+ + |𝐼𝑐−|

𝜂0 = 1 −
2 − 4𝑞𝜉/𝜋

1 + 1 − 𝑞𝜉 2

→ maximal SDE efficiency is 𝜼𝟎 ≈ 𝟒𝟎%, 

reached for 𝒒𝝃 ≈ 𝟎. 𝟗



SDE efficiency for arbitrary 𝜏

 Rapid decrease of SDE efficiency for poor junction transmission

 Optimal working point 𝑞𝜉 ≈ 0.9 approximately independent of 𝜏
 Inset: thermal degradation at 𝑞𝜉 = 0.9



Nonequilibrium Josephson diode: 

dispersion & scattering states

 Four types of incoming quasiparticle states: electron- or

hole-like states, incoming from left or right side

 Scattering processes at junction:  Andreev reflection vs

normal reflection (ballistic case: only AR)

 With voltage: Multiple Andreev reflection (MAR) ladder



Andreev reflection amplitude

Amplitude for Andreev reflection at NS interface 

for incoming state with energy 𝐸:

𝜌 𝐸 =
𝑒
−𝑖 cos−1

𝐸
Δ , 𝐸 < Δ,

sgn 𝐸
|𝐸| − 𝐸2 − Δ2

Δ
, 𝐸 > Δ

 Subgap energies: complex phase factor, 𝜌 𝐸 = 1

 Above-gap energies: real number with 𝜌 𝐸 < 1
Martin-Rodero and Levy Yeyati, Adv. Phys. 2011



Scattering states

Incoming state of type 1, 

incident energy 𝐸

Outgoing state: 

scattering amplitudes

(𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛)
at energy 𝐸𝑛 = 𝐸 + 𝑛𝑒𝑉

Example for MAR 

process with one

normal reflection

event (for 𝝉 < 𝟏)

NB: outgoing-state energy 𝑬𝒏 can be in any of the three spectral regimes!



NS junction: nonlinear conductance

 Warm-up exercise: contact between normal metal

(N) and helical SC (S) with transparency 𝜏
 normal metal modeled as ∆=0 limit of SC

 Conductance 𝐺 𝑉 =
𝑑𝐼

𝑑𝑉
from solution of scattering

problem & Landauer-Büttiker formula

 Ballistic case (T=0):

𝐺

2𝑒2/ℎ
= 1 +

1

2


𝛼=±

Θ 1 − |𝑣𝛼| +
Θ 𝑣𝛼 − 1

𝑣𝛼 + 𝑣𝛼
2 − 1

2

with 𝑣𝛼 =
𝑒𝑉

Δ
− 𝛼𝑞𝜉



NS junction conductance

Ballistic conductance obeys

2𝑒2

ℎ
≤ 𝐺 𝑉 ≤

4𝑒2

ℎ

Two spectral gaps clearly visible in kink-like features

 Subgap regime 𝑒𝑉 < Δ−: perfect Andreev reflection

→ 𝐺 =
4𝑒2

ℎ

Away from ballistic regime: numerical solution



NS junction conductance

 FCPM → two kink-like features, nonuniversal peak height

 NS conductance is symmetric in V  →  no rectification

(G in 
2𝑒2

ℎ
)



Transport through Josephson diode

 Matching conditions imply recurrence relations for

scattering amplitudes: Multiple Andreev Reflections (MAR)

 Symmetry relations → restrict incoming states to type s=1,2

 Amplitudes 𝑎𝑛, 𝑏𝑛 can be eliminated → 

𝑋𝑛,𝑛+1 𝑟
𝑐𝑛+1
𝑑𝑛+1

= 𝑋𝑛−1,𝑛
−1 −𝑟

𝑐𝑛−1
𝑑𝑛−1

+ 𝛿𝑛,0
𝛿𝑠,1 𝐽+
𝛿𝑠,2 𝐽−

𝑋𝑛,𝑛+1 𝑟 =
1

𝜏

𝜌+,𝑛 𝑟𝜌+,𝑛
−1 𝜌−,𝑛+1

𝑟 𝜌−,𝑛+1
with 𝑟 = 1 − 𝜏, 

𝜌𝛼=±,𝑛= 𝜌(𝐸 − 𝛼𝑣𝐹𝑞 + 𝑛𝑒𝑉),

𝐽𝛼 = 𝛼(𝜌𝛼,0
−1 − 𝜌𝛼,0)

2

1 + 𝜌𝛼,0
2



Josephson diode: ballistic limit

Analytical solution of recurrence relations for 𝜏 = 1 gives

𝐼𝑞 𝑉 = 𝐼𝑞=0 𝑉 +
2𝑒Δ

𝜋ℏ
𝑞𝜉

Analytical solution for ballistic limit

in standard case q=0 

Limits:

𝒆𝑽 ≫ 𝚫: effectively normal-conducting contact, 𝐼0 𝑉 =
2𝑒2

ℎ
𝑉

𝒆𝑽 ≪ 𝚫: time-averaged Andreev level current, 𝐼0(𝑉) =
4𝑒Δ

ℎ
sgn(𝑉)

Averin & Bardas, PRL 1995

Current carried by Cooper

pairs with FCPM

For finite reflection amplitude (𝝉 < 𝟏): 
Numerical analysis of recurrence relations…



Nonlinear conductance of Josephson 

diode
Numerical results (G in units of

𝟐𝒆𝟐/𝒉)

𝜏 = 0.7, 𝑞𝜉 = 0.3, 𝑇 = 0

Resonant MAR features at  

standard points :  
2Δ

𝑒𝑉
= 𝑛

but also for Doppler-shifted

gaps (if 𝜏 < 1) :  
2Δ±

𝑒𝑉
= 𝑛

→ side peaks or dips



MAR resonances

Ballistic MAR trajectory
in energy space: resonant 

feature if superconducting DoS

peaks align. Here for

3𝑒𝑉 = Δ+ + Δ− = 2Δ
(conventional MAR) 

Normal reflection process:

MAR feature at 2𝑒𝑉 = 2Δ−
(side peak/dip from

Doppler shifted gap)



Resistive rectification efficiency of

Josephson diode

Resistive rectification efficiency: 𝜂 𝑉 =
𝐼 𝑉 +𝐼(−𝑉)

𝐼 𝑉 −𝐼(−𝑉)

Ballistic limit (T=0):  𝜂 𝑉 =
4𝑒Δ

ℎ𝐼𝑞=0 𝑉
|𝑞|𝜉

𝒆𝑽 ≫ 𝚫: 𝐼0 𝑉 =
2𝑒2

ℎ
𝑉 → 𝜂 𝑉 ≃ 2|𝑞|𝜉

Δ

𝑒𝑉

𝒆𝑽 ≪ 𝚫: 𝐼0(𝑉) =
4𝑒Δ

ℎ
sgn(𝑉) →   𝜂 𝑉 ≃ |𝑞|𝜉

→ perfect rectification (𝜼 = 𝟏) for 𝒒 𝝃 → 𝟏 & 𝒆𝑽 ≪ 𝚫
→  SDE implies highly efficient resistive rectification

via MAR processes

Numerical analysis needed for 𝝉 < 𝟏



Large voltage regime

Consider regime 𝑒𝑉 ≫ Δ:

𝜂 𝑉 ≃ 𝐴 𝑞𝜉, 𝜏
Δ

𝑒𝑉

with dimensionless

prefactor 𝐴

→ rectification persists

even at high voltages

with 𝐴 𝑞𝜉, 𝜏 = 1 = 2|𝑞|𝜉



Resistive rectification in Josephson diode

with finite reflection

 Finite reflection

quickly degrades

rectification efficiency

(as for SDE case)

 Maximal efficiency

always for 𝒒𝝃 → 𝟏
(unlike SDE case)

 Side features better

visible in the derivative



Case study: Junction with Rashba dot

Consider 2D dot with Rashba spin-orbit coupling 𝛼 and in-plane 

Zeeman field 𝑏, start with 𝑈 = 0 → exactly solvable

 𝑁 relevant orbital energy levels 휀𝑛 for 𝛼 = 𝐵 = Γ = 0,  real-valued

spinor wave functions 𝜒𝑛 Ԧ𝑟 , tunnel contacts at 𝑥 = ±
𝐿

2
, 𝑦 = 0

Dot Hamiltonian:

𝐻𝑑𝑜𝑡 = σ𝑛 𝑑𝑛
+ 휀𝑛 + 𝑏 ⋅ Ԧ𝜎 𝑑𝑛 − 𝑖 σ𝑛𝑛′ 𝑑𝑛

+ Ԧ𝑎𝑛𝑛′ ⋅ Ԧ𝜎 𝑑𝑛′

Ԧ𝑎𝑛𝑛′ =
𝛼

𝑚
∫ 𝑑 Ԧ𝑟𝜒𝑛 Ԧ𝑟

𝜕𝑦
−𝜕𝑥

𝜒𝑛′(Ԧ𝑟)

Tunnel Hamiltonian:         𝐻𝑡𝑢𝑛 = σ
𝑛𝑗𝑘𝜎

𝑡𝑗𝑛𝑐𝑗𝑘𝜎
+ 𝑑𝑛𝜎 + ℎ. 𝑐.

→ 𝑁 × 𝑁 hybridization matrices Γ𝐿 , Γ𝑅 with Γ𝑗,𝑛𝑛′ = 𝜋𝜈0𝑡𝑗𝑛
∗ 𝑡𝑗𝑛′

BCS leads: 𝐻𝐵𝐶𝑆= σ
𝑗𝑘𝜎

휀𝑘𝑐𝑗𝑘𝜎
+ 𝑐𝑗𝑘𝜎 + σ

𝑗𝑘
(Δ𝑒∓

𝑖𝜑

2 𝑐
𝑗𝑘↑
+ 𝑐

𝑗 −𝑘 ↓
+ + ℎ. 𝑐. )

Rashba SOI matrix potential,

similar also for Dresselhaus SOI

Pauli matrices 𝝈𝒂 in spin space



Josephson current: Exact solution

Anomalous Josephson effect most pronounced for 𝑏 = 𝐵 Ԧ𝑒𝑥 but  

absent for 𝑏 = 𝐵 Ԧ𝑒𝑦 → focus on magnetic field ∥ Ԧ𝑒𝑥

After gauging out Ԧ𝑎𝑥 term:    for details, see Sun, Wang & Guo, PRB 2005

𝐼 𝜑 = −
2𝑒

ℏ
∫0
∞
𝑑𝜔 𝜕𝜑 𝑡𝑟 ln 𝑆 𝜔 with 4𝑁 × 4𝑁 matrix

𝑆 𝜔 = −𝑖𝜔 1 +
Γ𝐿+Γ𝑅

𝜔2+Δ2
+𝑊𝜎𝑧𝜏𝑧 + 𝑍 +

Δ

𝜔2+Δ2
𝑌

with 𝜔-independent matrices:         𝑊 = 𝑑𝑖𝑎𝑔(휀𝑛 −
𝛼2

2𝑚
)

𝑌 = Γ𝐿 + Γ𝑅 cos
𝜑

2
𝜎𝑥𝜏𝑧 + Γ𝐿 − Γ𝑅 sin

𝜑

2
𝜎𝑦

𝑍 = 𝑖𝐴𝑥𝜎𝑥𝜏𝑥 + 𝑖𝐴𝑧𝜎𝑧 −𝑀𝑥𝜏𝑦 +𝑀𝑧𝜏𝑧

Dell‘Anna, Zazunov, Egger & Martin, PRB 2007

Pauli matrices 𝝉𝒂 in Nambu (particle-hole) space



Exact solution

with spin-orbit vector of real 𝑁 × 𝑁 antisymmetric matrices:  

Ԧ𝐴𝑛𝑛′ =
𝛼

𝑚
∫ 𝑑Ԧ𝑟 𝜒𝑛 Ԧ𝑟 𝜕𝑦𝜒𝑛′ Ԧ𝑟

2 sin2 𝛼𝑥 − 1
0

sin 2𝛼𝑥
∝ 𝛼

and magnetic field vector of real 𝑁 × 𝑁 symmetric matrices:

𝑀𝑛𝑛′ = 𝐵∫ 𝑑Ԧ𝑟 𝜒𝑛 Ԧ𝑟 𝜒𝑛′ Ԧ𝑟
1 − 2 sin2(𝛼 𝑥)

0
− sin 2𝛼𝑥

∝ 𝐵

Exact expression →   𝐼𝑎 = 0 for 𝛼𝐵 = 0 →  both SOI and 

Zeeman field needed for anomalous Josephson effect!

Analytical progress:   assume small SOI and weak Zeeman field

→   𝐼𝑎 ∝ 𝛼𝐵 explicitly computable



Anomalous supercurrent

Decompose 𝑆 = 𝑆0 + 𝑆1 with 𝑆0 = 𝑆 𝛼 = 𝐵 = 𝜑 = 0
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first non-vanishing contribution: 𝑛 = 3
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Conditions for 𝜑0-junction behavior

 Finite Zeeman field vector with 𝑀 ⋅ Ԧ𝐴 ≠ 0:

broken TRS & field 𝑏 not parallel to Ԧ𝑒𝑦

 Finite spin-orbit vector:

need 𝛼 ≠ 0 & at least two dot levels (𝑁 ≥ 2)

 Broken chirality condition:     Γ𝐿 , Γ𝑅 ≠ 0

need broken inversion symmetry and 𝑁 ≥ 2

Summary: condition for anomalous supercurrent

𝑴 ⋅ 𝑨 𝚪𝑳, 𝚪𝑹 ≠ 𝟎

NB: condition also valid beyond perturbative regime & for 𝑼 > 𝟎

Zazunov, Egger, Jonckheere & Martin, PRL 2009



Basic explanation: Case 𝑁 = 2

Transfer of Cooper pair 

through dot for 𝝋 = 𝟎

SOI and Zeeman field to

lowest order 𝛼𝐵 give

𝐻′ = 𝜎𝑥
𝐵 𝑖𝐴
−𝑖𝐴 𝐵

𝐴 = 𝐴𝑥 12 ∝ 𝛼

assume real 𝒕𝒋𝒏

Example (a) gives correction 𝛿𝑡𝐿→𝑅 = 𝑡𝐿1𝑡𝑅1 𝑡𝐿1𝑖𝐴𝐵 𝑡𝑅2

Example (b) yields correction 𝛿𝑡𝑅→𝐿 = (𝑡𝑅2𝐵 −𝑖𝐴 𝑡𝐿1)(𝑡𝑅1𝑡𝐿1)



Constructive interference

 Both contributions to 𝐼𝑎 are identical & add up:

𝛿𝐼𝑎
(𝑎)

∝ 𝑣𝐴𝐵 Γ𝐿,11Γ𝑅,12

𝛿𝐼𝑎
(𝑏)

∝ −𝑣 −𝐴 𝐵Γ𝐿,11Γ𝑅,12

 Summing over all possible processes gives

𝐼𝑎∝ 𝑣𝐴𝐵 Γ𝐿,11 − Γ𝐿,22 Γ𝑅,12 − Γ𝑅,11 − Γ𝑅,22 Γ𝐿,12

→   𝐼𝑎 ≠ 0 indeed requires  𝛼𝐵 [Γ𝐿 , Γ𝑅] ≠ 0



Experimental observation of anomalous

Josephson effect
Szombati, Nadj-Perge, Car, Plissard, Bakkers & Kouwenhoven,

Nature Physics 2016

 InSb nanowire dot with

𝑁 = 2 levels and in-plane 

magnetic field

 SQUID geometry with

NbTiN as superconductor

 Gate-tunable 𝜑0-shifted 

CPR  observed

Measurement of voltage across SQUID vs flux (at constant current) → CPR  



Experimental evidence
𝜑0 vs field angle

matches predicted

dependence: 

𝐼𝑎 = 0 for 𝑏 = 𝐵 Ԧ𝑒𝑦

CPR (basically)

Monitor voltage drop vs gate-voltage / flux plane: 

Red: 𝜑0 = 0 reference case
see also: Mayer, Shabani et al., Nature Comm. 2020

Strambini, Giazotto et al., Nature Nanotechn. 2021                

Wesdorp et al., arXiv:2208.11198

Szombati et al., Nat. Phys. 2016



Numerical solution for SDE efficiency

Maximal SDE efficiency ≈ 𝟐𝟓%
for resonant energy levels

→ high junction transparency

weak link = two-level quantum

dot with Zeeman field, spin-orbit 

coupling 𝛼0 & dot potential 𝜇

𝛼0 = 1.4



Conclusions

 Introduction: Superconducting Diode Effect (SDE)

 Minimal model: Josephson junction with finite Cooper pair 
momentum

 Equilibrium properties: Andreev bound states, 
anomalous Josephson effect & SDE

 Finite bias voltage rectification & Multiple Andreev 
reflection (MAR) 

 Open issues: microscopic understanding of SDE 
mechanisms, application potential, … 

Zazunov, Rech, Jonckheere, Grémaud, Martin & Egger, 

arXiv:2307.14698 & arXiv:2307.15386
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